pip install winocr
Full install
pip install winocr[all]
The language to be recognized can be specified by the lang parameter (second argument).
import winocr
from PIL import Image
img = Image.open('test.jpg')
(await winocr.recognize_pil(img, 'ja')).text
import winocr
import cv2
img = cv2.imread('test.jpg')
(await winocr.recognize_cv2(img, 'ja')).text
Create a local connection by following these instructions.
pip install jupyterlab jupyter_http_over_ws
jupyter serverextension enable --py jupyter_http_over_ws
jupyter notebook --NotebookApp.allow_origin='https://colab.research.google.com' --ip=0.0.0.0 --port=8888 --NotebookApp.port_retries=0
Also available on Jupyter / Jupyter Lab.
import cv2
from winocr import recognize_cv2_sync
img = cv2.imread('testocr.png')
recognize_cv2_sync(img)['text']
'This is a lot of 12 point text to test the ocr code and see if it works on all types of file format. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox.'
from PIL import Image
from winocr import recognize_pil_sync
img = Image.open('testocr.png')
recognize_pil_sync(img)['text']
'This is a lot of 12 point text to test the ocr code and see if it works on all types of file format. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox.'
from PIL import Image
import concurrent.futures
from winocr import recognize_pil_sync
images = [Image.open('testocr.png') for i in range(1000)]
with concurrent.futures.ProcessPoolExecutor() as executor:
results = list(executor.map(recognize_pil_sync, images))
print(results)
Run server
pip install winocr[api]
winocr_serve
curl localhost:8000?lang=ja --data-binary @test.jpg
import requests
bytes = open('test.jpg', 'rb').read()
requests.post('http://localhost:8000/?lang=ja', bytes).json()['text']
You can run OCR with the Colaboratory runtime with ./ngrok http 8000
from PIL import Image
from io import BytesIO
img = Image.open('test.jpg')
# Preprocessing
buf = BytesIO()
img.save(buf, format='JPEG')
requests.post('https://15a5fabf0d78.ngrok.io/?lang=ja', buf.getvalue()).json()['text']
import cv2
import requests
img = cv2.imread('test.jpg')
# Preprocessing
requests.post('https://15a5fabf0d78.ngrok.io/?lang=ja', cv2.imencode('.jpg', img)[1].tobytes()).json()['text']
If you only need to recognize Chrome and English, you can also consider the Text Detection API.
// File
const file = document.querySelector('[type=file]').files[0]
await fetch('http://localhost:8000/', {method: 'POST', body: file}).then(r => r.json())
// Blob
const blob = await fetch('https://image.itmedia.co.jp/ait/articles/1706/15/news015_16.jpg').then(r=>r.blob())
await fetch('http://localhost:8000/?lang=ja', {method: 'POST', body: blob}).then(r => r.json())
It is also possible to run OCR Server on Windows Server.
You can get angle, text, line, word, BoundingBox.
import pprint
result = await winocr.recognize_pil(img, 'ja')
pprint.pprint({
'text_angle': result.text_angle,
'text': result.text,
'lines': [{
'text': line.text,
'words': [{
'bounding_rect': {'x': word.bounding_rect.x, 'y': word.bounding_rect.y, 'width': word.bounding_rect.width, 'height': word.bounding_rect.height},
'text': word.text
} for word in line.words]
} for line in result.lines]
})
# Run as Administrator
Add-WindowsCapability -Online -Name "Language.OCR~~~en-US~0.0.1.0"
Add-WindowsCapability -Online -Name "Language.OCR~~~ja-JP~0.0.1.0"
# Search for installed languages
Get-WindowsCapability -Online -Name "Language.OCR*"
# State: Not Present language is not installed, so please install it if necessary.
Name : Language.OCR~~~hu-HU~0.0.1.0
State : NotPresent
DisplayName : ハンガリー語の光学式文字認識
Description : ハンガリー語の光学式文字認識
DownloadSize : 194407
InstallSize : 535714
Name : Language.OCR~~~it-IT~0.0.1.0
State : NotPresent
DisplayName : イタリア語の光学式文字認識
Description : イタリア語の光学式文字認識
DownloadSize : 159875
InstallSize : 485922
Name : Language.OCR~~~ja-JP~0.0.1.0
State : Installed
DisplayName : 日本語の光学式文字認識
Description : 日本語の光学式文字認識
DownloadSize : 1524589
InstallSize : 3398536
Name : Language.OCR~~~ko-KR~0.0.1.0
State : NotPresent
DisplayName : 韓国語の光学式文字認識
Description : 韓国語の光学式文字認識
DownloadSize : 3405683
InstallSize : 7890408
If you hate Python and just want to recognize it with PowerShell, click here
By processing in parallel, it is 3 times faster. You can make it even faster by increasing the number of cores!
from PIL import Image
images = [Image.open('testocr.png') for i in range(1000)]
import winocr
[(await winocr.recognize_pil(img)).text for img in images]
I'm using 100% CPU.
Create a worker module.
%%writefile worker.py
import winocr
import asyncio
async def ensure_coroutine(awaitable):
return await awaitable
def recognize_pil_text(img):
return asyncio.run(ensure_coroutine(winocr.recognize_pil(img))).text
import worker
import concurrent.futures
with concurrent.futures.ProcessPoolExecutor() as executor:
# https://stackoverflow.com/questions/62488423
results = executor.map(worker.recognize_pil_text, images)
list(results)