Skip to content

Artifacts and Code Distribution for web publications

License

Notifications You must be signed in to change notification settings

godot107/public

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

public

Artifacts and Code Distribution for web publications, machine learning, and deep learning applications.

Computer Vision

NLP

  • Classify News Articles (gensim/sklearn): Original Publication Using gensim, create a word2vec model based on news articles. Using the same model, create a logistic regression model that inputs the word vectors and returns a category or type of news articles.

Audio

GAN

Classification

Regression

  • Possum Age Regression (Keras): Original Publication Using possum measurements, predict the age of a possum using Keras Deep Learning framework.
  • Iris SepalLength Regresion (SageMaker): Using Iris measurements, predict the size of SepalLengthCm using SepalWidthCm, PetalLengthCm, and PetalWidthCm. Utilizes AWS built-in algorithm, LinearLearner.
  • Laptop Prices Regression (pytorch): Using laptop measurements, predict the price of a laptop using pytorch framework.
  • Linear Regression (tensorflow): Using synethic data, create a regression model to showcase tensorflow/keras framework.

Clustering

Amazon Web Services (AWS)

  • AWS Kinesis Anomaly Detection (Kinesis): Original Publication Create a Kinesis Data Stream to receive events from an emitter. Report anomalies based on SQL query and AWS Random Cut Forest Algorithm.
  • Breast Cancer Detection (SageMaker): Original Publication Using breast cancer measurements, classify which patient has breast cancer using sklearn framework and AWS SageMaker.
  • Iris SepalLength Regresion (SageMaker): Using Iris measurements, predict the size of SepalLengthCm using SepalWidthCm, PetalLengthCm, and PetalWidthCm. Utilizes AWS built-in algorithm, LinearLearner.
  • Deploy a model Artifact (SageMaker): Train a model using xgboost framework, save the model artifact in s3, and load for inferencing as an endpoint

MLOps

About

Artifacts and Code Distribution for web publications

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published