@@ -15,7 +15,7 @@ import (
15
15
// where Q is an orthonormal matrix and T is symmetric and tridiagonal.
16
16
//
17
17
// On entry, a contains the elements of the input matrix in the triangle specified
18
- // by uplo. On exit, the diagonal and sub/superdiagonal are overwritten by the
18
+ // by uplo. On exit, the diagonal and sub/super-diagonal are overwritten by the
19
19
// corresponding elements of the tridiagonal matrix T. The remaining elements in
20
20
// the triangle, along with the array tau, contain the data to construct Q as
21
21
// the product of elementary reflectors.
@@ -100,6 +100,7 @@ func (impl Implementation) Dsytrd(uplo blas.Uplo, n int, a []float64, lda int, d
100
100
nb = 1
101
101
}
102
102
ldwork = nb
103
+
103
104
if upper {
104
105
// Reduce the upper triangle of A. Columns 0:kk are handled by the
105
106
// unblocked method.
@@ -133,7 +134,8 @@ func (impl Implementation) Dsytrd(uplo blas.Uplo, n int, a []float64, lda int, d
133
134
134
135
// Update the unreduced submatrix A[i+ib:n, i+ib:n], using an update
135
136
// of the form A -= V*W^T - W*V^T.
136
- bi .Dsyr2k (uplo , blas .NoTrans , n - i - nb , nb , - 1 , a [(i + nb )* lda + i :], lda , work [nb + i :], ldwork , 1 , a [(i + nb )* lda + i + nb :], lda )
137
+ bi .Dsyr2k (uplo , blas .NoTrans , n - i - nb , nb , - 1 , a [(i + nb )* lda + i :], lda ,
138
+ work [nb + i :], ldwork , 1 , a [(i + nb )* lda + i + nb :], lda )
137
139
138
140
// Copy subdiagonal elements back into A, and diagonal elements into D.
139
141
for j := i ; j < i + nb ; j ++ {
0 commit comments