-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Partially address Issue #10413 by adding NV0000_CTRL_CMD_OS_UNIX_GET_EXPORT_OBJECT_INFO, NV0000_CTRL_CMD_OS_UNIX_IMPORT_OBJECT_FROM_FD, NV0041_CTRL_CMD_GET_SURFACE_INFO #10434
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Also worth noting that this implementation is for driver version 535. The latest driver has different params for |
https://modal-public-assets.s3.amazonaws.com/runsc.log.20240512-202107.171204.boot.txt.zip is debug logs of the program above (~150MiB).
|
ayushr2
reviewed
May 13, 2024
ayushr2
approved these changes
May 21, 2024
copybara-service bot
pushed a commit
that referenced
this pull request
May 21, 2024
…EXPORT_OBJECT_INFO, NV0000_CTRL_CMD_OS_UNIX_IMPORT_OBJECT_FROM_FD, NV0041_CTRL_CMD_GET_SURFACE_INFO Following up on #10413 (comment). Ayush's fix revealed more missing commands. With these changes, the reproduction in #10413 _still does not work._ Here's an updated reproduction Dockerfile that crashes because of the SIGCHILD handler. Without the SIGCHILD handler the program hangs. ```Dockerfile FROM python:3.11-slim-bookworm RUN apt-get update && apt-get install --yes python3 python3-distutils clang wget vim RUN wget https://bootstrap.pypa.io/get-pip.py RUN python3 get-pip.py RUN python3 -m pip install clang~=10.0.1 # must match version of `clang` installed above. RUN python3 -m pip install --ignore-installed torch torchvision lightning numpy memory_profiler COPY <<EOF repro.py print("Hello from inside container.") import psutil current_process = psutil.Process() parent_process = current_process.parent() print(f"Processes: {current_process=} {parent_process=}") import time import torch import torch.nn as nn import torch.nn.functional as F import lightning as L from memory_profiler import profile from torchvision.datasets import CIFAR100 from torchvision import transforms from torchvision import models from torch.utils.data import DataLoader import os import signal import pathlib def handler(signum, frame): print('Signal handler called with signal', signum) os.waitpid(-1, 0) raise KeyboardInterrupt() # gVisor is ignoring the SIGCHILD 'Discarding ignored signal 17' signal.signal(signal.SIGCHLD, handler) class MagixNet(L.LightningModule): def __init__(self, nbr_cat): super().__init__() module = models.resnet50(weights=models.ResNet50_Weights.DEFAULT) module.fc = nn.Linear(2048, nbr_cat) self.module = module def forward(self, x): return self.module(x) def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02) def prepare_data(): pipeline = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) train_ds = CIFAR100('data', train=True, download=True, transform=pipeline) train_dl = DataLoader(train_ds, batch_size=128, num_workers=4) val_ds = CIFAR100('data', train=False, download=True, transform=pipeline) val_dl = DataLoader(val_ds, batch_size=128, num_workers=4) return train_dl, val_dl if __name__ == "__main__": torch.set_float32_matmul_precision('medium') train_dl, val_dl = prepare_data() model = MagixNet(100) trainer = L.Trainer(max_epochs=1, strategy="ddp_notebook") start = time.time() trainer.fit(model, train_dl, val_dl) print(f"Training duration (seconds): {time.time() - start:.2f}") nccl_debug_file = pathlib.Path("/tmp/runsc-nccl.txt") if nccl_debug_file.exists(): print("NCCL Debugging") print(nccl_debug_file.read_text()) EOF ENTRYPOINT ["python3", "repro.py"] ``` Run like this: ``` sudo docker run --runtime=runsc-2 --shm-size=1000GB --gpus '"device=GPU-48070a35-b2ea-643c-eebe-0c55d2a541a4,GPU-8061048a-aa0f-76bd-457b-71c6be60386e"' -e NCCL_DEBUG=INFO -e NCCL_DEBUG_FILE="/tmp/runsc-nccl.txt" sha256:1c1fc535214ec1111b46a87fe20558e7c078185e4158c3ce253dc56a5a9be628 ``` **`/etc/docker/daemon.json`** ``` { "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] }, "runsc-2": { "path": "/home/modal/runsc2", "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc-2/", "-debug", "-strace"] }, } } ``` FUTURE_COPYBARA_INTEGRATE_REVIEW=#10434 from thundergolfer:master 76bf495 PiperOrigin-RevId: 635812044
ayushr2
reviewed
May 21, 2024
NV0000_CTRL_CMD_OS_UNIX_IMPORT_OBJECT_FROM_FD, nvgpu.NV0041_CTRL_CMD_GET_SURFACE_INFO
copybara-service bot
pushed a commit
that referenced
this pull request
May 21, 2024
…EXPORT_OBJECT_INFO, NV0000_CTRL_CMD_OS_UNIX_IMPORT_OBJECT_FROM_FD, NV0041_CTRL_CMD_GET_SURFACE_INFO Following up on #10413 (comment). Ayush's fix revealed more missing commands. With these changes, the reproduction in #10413 _still does not work._ Here's an updated reproduction Dockerfile that crashes because of the SIGCHILD handler. Without the SIGCHILD handler the program hangs. ```Dockerfile FROM python:3.11-slim-bookworm RUN apt-get update && apt-get install --yes python3 python3-distutils clang wget vim RUN wget https://bootstrap.pypa.io/get-pip.py RUN python3 get-pip.py RUN python3 -m pip install clang~=10.0.1 # must match version of `clang` installed above. RUN python3 -m pip install --ignore-installed torch torchvision lightning numpy memory_profiler COPY <<EOF repro.py print("Hello from inside container.") import psutil current_process = psutil.Process() parent_process = current_process.parent() print(f"Processes: {current_process=} {parent_process=}") import time import torch import torch.nn as nn import torch.nn.functional as F import lightning as L from memory_profiler import profile from torchvision.datasets import CIFAR100 from torchvision import transforms from torchvision import models from torch.utils.data import DataLoader import os import signal import pathlib def handler(signum, frame): print('Signal handler called with signal', signum) os.waitpid(-1, 0) raise KeyboardInterrupt() # gVisor is ignoring the SIGCHILD 'Discarding ignored signal 17' signal.signal(signal.SIGCHLD, handler) class MagixNet(L.LightningModule): def __init__(self, nbr_cat): super().__init__() module = models.resnet50(weights=models.ResNet50_Weights.DEFAULT) module.fc = nn.Linear(2048, nbr_cat) self.module = module def forward(self, x): return self.module(x) def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02) def prepare_data(): pipeline = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) train_ds = CIFAR100('data', train=True, download=True, transform=pipeline) train_dl = DataLoader(train_ds, batch_size=128, num_workers=4) val_ds = CIFAR100('data', train=False, download=True, transform=pipeline) val_dl = DataLoader(val_ds, batch_size=128, num_workers=4) return train_dl, val_dl if __name__ == "__main__": torch.set_float32_matmul_precision('medium') train_dl, val_dl = prepare_data() model = MagixNet(100) trainer = L.Trainer(max_epochs=1, strategy="ddp_notebook") start = time.time() trainer.fit(model, train_dl, val_dl) print(f"Training duration (seconds): {time.time() - start:.2f}") nccl_debug_file = pathlib.Path("/tmp/runsc-nccl.txt") if nccl_debug_file.exists(): print("NCCL Debugging") print(nccl_debug_file.read_text()) EOF ENTRYPOINT ["python3", "repro.py"] ``` Run like this: ``` sudo docker run --runtime=runsc-2 --shm-size=1000GB --gpus '"device=GPU-48070a35-b2ea-643c-eebe-0c55d2a541a4,GPU-8061048a-aa0f-76bd-457b-71c6be60386e"' -e NCCL_DEBUG=INFO -e NCCL_DEBUG_FILE="/tmp/runsc-nccl.txt" sha256:1c1fc535214ec1111b46a87fe20558e7c078185e4158c3ce253dc56a5a9be628 ``` **`/etc/docker/daemon.json`** ``` { "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] }, "runsc-2": { "path": "/home/modal/runsc2", "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc-2/", "-debug", "-strace"] }, } } ``` FUTURE_COPYBARA_INTEGRATE_REVIEW=#10434 from thundergolfer:master bf18079 PiperOrigin-RevId: 635812044
copybara-service bot
pushed a commit
that referenced
this pull request
May 21, 2024
…EXPORT_OBJECT_INFO, NV0000_CTRL_CMD_OS_UNIX_IMPORT_OBJECT_FROM_FD, NV0041_CTRL_CMD_GET_SURFACE_INFO Following up on #10413 (comment). Ayush's fix revealed more missing commands. With these changes, the reproduction in #10413 _still does not work._ Here's an updated reproduction Dockerfile that crashes because of the SIGCHILD handler. Without the SIGCHILD handler the program hangs. ```Dockerfile FROM python:3.11-slim-bookworm RUN apt-get update && apt-get install --yes python3 python3-distutils clang wget vim RUN wget https://bootstrap.pypa.io/get-pip.py RUN python3 get-pip.py RUN python3 -m pip install clang~=10.0.1 # must match version of `clang` installed above. RUN python3 -m pip install --ignore-installed torch torchvision lightning numpy memory_profiler COPY <<EOF repro.py print("Hello from inside container.") import psutil current_process = psutil.Process() parent_process = current_process.parent() print(f"Processes: {current_process=} {parent_process=}") import time import torch import torch.nn as nn import torch.nn.functional as F import lightning as L from memory_profiler import profile from torchvision.datasets import CIFAR100 from torchvision import transforms from torchvision import models from torch.utils.data import DataLoader import os import signal import pathlib def handler(signum, frame): print('Signal handler called with signal', signum) os.waitpid(-1, 0) raise KeyboardInterrupt() # gVisor is ignoring the SIGCHILD 'Discarding ignored signal 17' signal.signal(signal.SIGCHLD, handler) class MagixNet(L.LightningModule): def __init__(self, nbr_cat): super().__init__() module = models.resnet50(weights=models.ResNet50_Weights.DEFAULT) module.fc = nn.Linear(2048, nbr_cat) self.module = module def forward(self, x): return self.module(x) def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02) def prepare_data(): pipeline = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) train_ds = CIFAR100('data', train=True, download=True, transform=pipeline) train_dl = DataLoader(train_ds, batch_size=128, num_workers=4) val_ds = CIFAR100('data', train=False, download=True, transform=pipeline) val_dl = DataLoader(val_ds, batch_size=128, num_workers=4) return train_dl, val_dl if __name__ == "__main__": torch.set_float32_matmul_precision('medium') train_dl, val_dl = prepare_data() model = MagixNet(100) trainer = L.Trainer(max_epochs=1, strategy="ddp_notebook") start = time.time() trainer.fit(model, train_dl, val_dl) print(f"Training duration (seconds): {time.time() - start:.2f}") nccl_debug_file = pathlib.Path("/tmp/runsc-nccl.txt") if nccl_debug_file.exists(): print("NCCL Debugging") print(nccl_debug_file.read_text()) EOF ENTRYPOINT ["python3", "repro.py"] ``` Run like this: ``` sudo docker run --runtime=runsc-2 --shm-size=1000GB --gpus '"device=GPU-48070a35-b2ea-643c-eebe-0c55d2a541a4,GPU-8061048a-aa0f-76bd-457b-71c6be60386e"' -e NCCL_DEBUG=INFO -e NCCL_DEBUG_FILE="/tmp/runsc-nccl.txt" sha256:1c1fc535214ec1111b46a87fe20558e7c078185e4158c3ce253dc56a5a9be628 ``` **`/etc/docker/daemon.json`** ``` { "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] }, "runsc-2": { "path": "/home/modal/runsc2", "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc-2/", "-debug", "-strace"] }, } } ``` FUTURE_COPYBARA_INTEGRATE_REVIEW=#10434 from thundergolfer:master bf18079 PiperOrigin-RevId: 635812044
copybara-service bot
pushed a commit
that referenced
this pull request
May 21, 2024
…EXPORT_OBJECT_INFO, NV0000_CTRL_CMD_OS_UNIX_IMPORT_OBJECT_FROM_FD, NV0041_CTRL_CMD_GET_SURFACE_INFO Following up on #10413 (comment). Ayush's fix revealed more missing commands. With these changes, the reproduction in #10413 _still does not work._ Here's an updated reproduction Dockerfile that crashes because of the SIGCHILD handler. Without the SIGCHILD handler the program hangs. ```Dockerfile FROM python:3.11-slim-bookworm RUN apt-get update && apt-get install --yes python3 python3-distutils clang wget vim RUN wget https://bootstrap.pypa.io/get-pip.py RUN python3 get-pip.py RUN python3 -m pip install clang~=10.0.1 # must match version of `clang` installed above. RUN python3 -m pip install --ignore-installed torch torchvision lightning numpy memory_profiler COPY <<EOF repro.py print("Hello from inside container.") import psutil current_process = psutil.Process() parent_process = current_process.parent() print(f"Processes: {current_process=} {parent_process=}") import time import torch import torch.nn as nn import torch.nn.functional as F import lightning as L from memory_profiler import profile from torchvision.datasets import CIFAR100 from torchvision import transforms from torchvision import models from torch.utils.data import DataLoader import os import signal import pathlib def handler(signum, frame): print('Signal handler called with signal', signum) os.waitpid(-1, 0) raise KeyboardInterrupt() # gVisor is ignoring the SIGCHILD 'Discarding ignored signal 17' signal.signal(signal.SIGCHLD, handler) class MagixNet(L.LightningModule): def __init__(self, nbr_cat): super().__init__() module = models.resnet50(weights=models.ResNet50_Weights.DEFAULT) module.fc = nn.Linear(2048, nbr_cat) self.module = module def forward(self, x): return self.module(x) def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02) def prepare_data(): pipeline = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) train_ds = CIFAR100('data', train=True, download=True, transform=pipeline) train_dl = DataLoader(train_ds, batch_size=128, num_workers=4) val_ds = CIFAR100('data', train=False, download=True, transform=pipeline) val_dl = DataLoader(val_ds, batch_size=128, num_workers=4) return train_dl, val_dl if __name__ == "__main__": torch.set_float32_matmul_precision('medium') train_dl, val_dl = prepare_data() model = MagixNet(100) trainer = L.Trainer(max_epochs=1, strategy="ddp_notebook") start = time.time() trainer.fit(model, train_dl, val_dl) print(f"Training duration (seconds): {time.time() - start:.2f}") nccl_debug_file = pathlib.Path("/tmp/runsc-nccl.txt") if nccl_debug_file.exists(): print("NCCL Debugging") print(nccl_debug_file.read_text()) EOF ENTRYPOINT ["python3", "repro.py"] ``` Run like this: ``` sudo docker run --runtime=runsc-2 --shm-size=1000GB --gpus '"device=GPU-48070a35-b2ea-643c-eebe-0c55d2a541a4,GPU-8061048a-aa0f-76bd-457b-71c6be60386e"' -e NCCL_DEBUG=INFO -e NCCL_DEBUG_FILE="/tmp/runsc-nccl.txt" sha256:1c1fc535214ec1111b46a87fe20558e7c078185e4158c3ce253dc56a5a9be628 ``` **`/etc/docker/daemon.json`** ``` { "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] }, "runsc-2": { "path": "/home/modal/runsc2", "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc-2/", "-debug", "-strace"] }, } } ``` FUTURE_COPYBARA_INTEGRATE_REVIEW=#10434 from thundergolfer:master bf18079 PiperOrigin-RevId: 635812044
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Following up on #10413 (comment).
Ayush's fix revealed more missing commands. With these changes, the reproduction in #10413 still does not work. Here's an updated reproduction Dockerfile that crashes because of the SIGCHILD handler. Without the SIGCHILD handler the program hangs.
Run like this:
/etc/docker/daemon.json