-
Notifications
You must be signed in to change notification settings - Fork 818
/
MaxSum3SubArray.java
121 lines (111 loc) · 3.84 KB
/
MaxSum3SubArray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 22/11/2017.
*
* <p>In a given array nums of positive integers, find three non-overlapping subarrays with maximum
* sum.
*
* <p>Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.
*
* <p>Return the result as a list of indices representing the starting position of each interval
* (0-indexed). If there are multiple answers, return the lexicographically smallest one.
*
* <p>Example: Input: [1,2,1,2,6,7,5,1], 2 Output: [0, 3, 5] Explanation: Subarrays [1, 2], [2, 6],
* [7, 5] correspond to the starting indices [0, 3, 5]. We could have also taken [2, 1], but an
* answer of [1, 3, 5] would be lexicographically larger. Note: nums.length will be between 1 and
* 20000. nums[i] will be between 1 and 65535. k will be between 1 and floor(nums.length / 3).
*
* <p>Solution: O(N) solution by prefix and reverse-prefix sum First calculate max index for array
* index k, then use this to calculate max index for two array indices j and k and again use this
* result to calculate the final max index for i, j and k for the 3 arrays.
*/
public class MaxSum3SubArray {
class Max {
int i, j, k, max;
Max(int i, int max) {
this.i = i;
this.max = max;
}
Max(int i, int j, int max) {
this.i = i;
this.j = j;
this.max = max;
}
}
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int[] A = {1, 2, 1, 2, 6};
int[] result = new MaxSum3SubArray().maxSumOfThreeSubarrays(A, 1);
for (int i = 0; i < result.length; i++) System.out.print(result[i] + " ");
}
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int[] fPrefix = new int[nums.length]; // forward prefix sum
int[] rPrefix = new int[nums.length]; // reverse prefix sum
// calculate forward prefix sum
for (int i = 0; i < k; i++) {
fPrefix[0] += nums[i];
}
for (int i = 1; i < nums.length; i++) {
if (i + k - 1 < nums.length) {
fPrefix[i] = fPrefix[i - 1] - nums[i - 1] + nums[i + k - 1];
}
}
int sum = 0;
for (int i = nums.length - 1; i >= nums.length - k; i--) {
sum += nums[i];
}
Max[] max1 = new Max[nums.length];
max1[nums.length - k] = new Max(nums.length - k, sum);
// calculate reverse prefix sum
rPrefix[nums.length - k] = sum;
for (int i = nums.length - 1; i >= 0; i--) {
if (i + k >= nums.length) continue;
rPrefix[i] = rPrefix[i + 1] - nums[i + k] + nums[i];
}
// calculate max for k index
for (int i = nums.length - 1; i >= 0; i--) {
if (i + k >= nums.length) continue;
max1[i] = new Max(i, rPrefix[i]);
if (max1[i + 1] != null) {
if (max1[i].max < max1[i + 1].max) {
max1[i] = new Max(max1[i + 1].i, max1[i + 1].max);
}
}
}
// calculate max for j and k index
Max[] max2 = new Max[nums.length];
for (int i = nums.length - 1; i >= 0; i--) {
if (i + k < nums.length && max1[i + k] != null) {
max2[i] = new Max(i, max1[i + k].i, fPrefix[i] + max1[i + k].max);
}
}
for (int i = nums.length - 1; i >= 0; i--) {
if (i + 1 > nums.length - 1 || max2[i + 1] == null) continue;
if (max2[i].max < max2[i + 1].max) {
max2[i].max = max2[i + 1].max;
max2[i].i = max2[i + 1].i;
max2[i].j = max2[i + 1].j;
}
}
// calculate max for i, j and k index
int[] result = new int[3];
int max = 0;
for (int i = 0; i < nums.length; i++) {
if ((i + k) < nums.length - 1 && max2[i + k] != null) {
int temp = fPrefix[i] + max2[i + k].max;
if (temp > max) {
max = temp;
result[0] = i;
result[1] = max2[i + k].i;
result[2] = max2[i + k].j;
}
}
}
return result;
}
}