Skip to content

grburgess/pynchrotron

Repository files navigation

Build Status codecov DOI

pynchrotron

alt text

Implements synchrotron emission from cooling electrons. This is the model used in Burgess et al (2019). Please cite if you find this code useful for your research.

  • This code gets rid of the need for GSL which was originally relied on for a quick computation of the of the synchrotron kernel which is an integral over a Bessel function.
  • This code has been ported from GSL and written directly in python as well as accelerated with numba
  • An astromodels function is also supplied for direct use in 3ML.

Usage

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline 

import pynchrotron
/Users/jburgess/.environs/pynchro/lib/python3.7/site-packages/astromodels/core/parameter.py:555: UserWarning: We have set the min_value of K to 1e-99 because there was a postive transform
  warnings.warn('We have set the min_value of %s to 1e-99 because there was a postive transform' % self.path)
/Users/jburgess/.environs/pynchro/lib/python3.7/site-packages/astromodels/core/parameter.py:555: UserWarning: We have set the min_value of xc to 1e-99 because there was a postive transform
  warnings.warn('We have set the min_value of %s to 1e-99 because there was a postive transform' % self.path)

Create an astromodels model

model = pynchrotron.SynchrotronNumerical()

model
  • description: Synchrotron emission from cooling electrions
  • formula: $ $
  • parameters:
    • K:
      • value: 1.0
      • desc: normalization
      • min_value: 0.0
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: True
    • B:
      • value: 100.0
      • desc: energy scaling
      • min_value: 0.01
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 10.0
      • free: True
    • index:
      • value: 3.5
      • desc: spectral index of electrons
      • min_value: 2.0
      • max_value: 6.0
      • unit:
      • is_normalization: False
      • delta: 0.35000000000000003
      • free: True
    • gamma_min:
      • value: 500000.0
      • desc: minimum electron lorentz factor
      • min_value: 1.0
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 50000.0
      • free: False
    • gamma_cool:
      • value: 90000000.0
      • desc: cooling time of electrons
      • min_value: None
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 9000000.0
      • free: True
    • gamma_max:
      • value: 100000000.0
      • desc: minimum electron lorentz factor
      • min_value: 1000000.0
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 10000000.0
      • free: False
    • bulk_gamma:
      • value: 1.0
      • desc: bulk Lorentz factor
      • min_value: 1.0
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: False

Plot the model

fig, ax = plt.subplots()


ene = np.logspace(1,6,400)

ax.loglog(ene, ene**2 * model(ene))
ax.set_xlabel('energy')
ax.set_ylabel(r'$\nu F_{\nu}$')
Text(0, 0.5, '$\\nu F_{\\nu}$')

png

fig, ax = plt.subplots()

gamma_min = 500000.

gamma_cool = np.linspace(.1 * gamma_min, 5* gamma_min, 10)



ene = np.logspace(-1,6,400)

for gc in gamma_cool:
    model.gamma_cool = gc
    model.gamma_min = gamma_min
    
    ax.loglog(ene, ene**2 * model(ene))
ax.set_xlabel('energy')
ax.set_ylabel(r'$\nu F_{\nu}$')
Text(0, 0.5, '$\\nu F_{\\nu}$')

png