MNIST dataset classification with Hopfield network
test_count = 10000
scale = 0.6
q = 0
method='strokey'
model = Hopfield()
Testing:
100%|████████████████████████████████████████████████████████████████████████████| 10000/10000 [39:54<00:00, 4.18it/s]
Result with Dice(F1) score classifier
0: 78%, 1019 tests
1: 80%, 1095 tests
2: 14%, 996 tests
3: 47%, 1002 tests
4: 39%, 971 tests
5: 22%, 896 tests
6: 70%, 994 tests
7: 64%, 1079 tests
8: 6%, 964 tests
9: 50%, 984 tests
total: 48.33%