-
description
- test code for syntaxnet
-
how to test
(after installing syntaxnet)
$ pwd
/path/to/models/syntaxnet
$ git clone https://github.com/dsindex/syntaxnet.git work
$ cd work
$ echo "hello syntaxnet" | ./demo.sh
(training parser only with parsed corpus)
$ ./parser_trainer_test.sh
-
download univeral dependency treebank data
$ cd work $ mkdir corpus $ cd corpus (downloading ud-treebanks-v1.2.tgz) $ tar -zxvf ud-treebanks-v1.2.tgz $ ls universal-dependencies-1.2 $ UD_Ancient_Greek UD_Basque UD_Czech ....
-
training tagger and parser with another corpus
(for example, training UD_English)
(detail instructions can be found
in https://github.com/tensorflow/models/tree/master/syntaxnet)
$ ./train.sh -v -v
...
#preprocessing with tagger
INFO:tensorflow:Seconds elapsed in evaluation: 9.77, eval metric: 99.71%
INFO:tensorflow:Seconds elapsed in evaluation: 1.26, eval metric: 92.04%
INFO:tensorflow:Seconds elapsed in evaluation: 1.26, eval metric: 92.07%
...
#pretrain parser
INFO:tensorflow:Seconds elapsed in evaluation: 4.97, eval metric: 82.20%
...
#evaluate pretrained parser
INFO:tensorflow:Seconds elapsed in evaluation: 44.30, eval metric: 92.36%
INFO:tensorflow:Seconds elapsed in evaluation: 5.42, eval metric: 82.67%
INFO:tensorflow:Seconds elapsed in evaluation: 5.59, eval metric: 82.36%
...
#train parser
INFO:tensorflow:Seconds elapsed in evaluation: 57.69, eval metric: 83.95%
...
#evaluate parser
INFO:tensorflow:Seconds elapsed in evaluation: 283.77, eval metric: 96.54%
INFO:tensorflow:Seconds elapsed in evaluation: 34.49, eval metric: 84.09%
INFO:tensorflow:Seconds elapsed in evaluation: 34.97, eval metric: 83.49%
...
- training parser only
(in case you have other pos-tagger
and want to build parser only from the parsed corpus)
$ ./train_p.sh -v -v
...
#pretrain parser
...
#evaluate pretrained parser
INFO:tensorflow:Seconds elapsed in evaluation: 44.15, eval metric: 92.21%
INFO:tensorflow:Seconds elapsed in evaluation: 5.56, eval metric: 87.84%
INFO:tensorflow:Seconds elapsed in evaluation: 5.43, eval metric: 86.56%
...
#train parser
...
#evaluate parser
INFO:tensorflow:Seconds elapsed in evaluation: 279.04, eval metric: 94.60%
INFO:tensorflow:Seconds elapsed in evaluation: 33.19, eval metric: 88.60%
INFO:tensorflow:Seconds elapsed in evaluation: 32.57, eval metric: 87.77%
...
- test new model
$ echo "this is my own tagger and parser" | ./test.sh
...
Input: this is my own tagger and parser
Parse:
tagger NN ROOT
+-- this DT nsubj
+-- is VBZ cop
+-- my PRP$ nmod:poss
+-- own JJ amod
+-- and CC cc
+-- parser NN conj
* original model's output
$ echo "this is my own tagger and parser" | ./demo.sh
Input: this is my own tagger and parser
Parse:
tagger NN ROOT
+-- this DT nsubj
+-- is VBZ cop
+-- my PRP$ poss
+-- own JJ amod
+-- and CC cc
+-- parser ADD conj
$ echo "Bob brought the pizza to Alice ." | ./test.sh
Input: Bob brought the pizza to Alice .
Parse:
brought VBD ROOT
+-- Bob NNP nsubj
+-- pizza NN dobj
| +-- the DT det
+-- Alice NNP nmod
| +-- to IN case
+-- . . punct
* original model's output
$ echo "Bob brought the pizza to Alice ." | ./demo.sh
Input: Bob brought the pizza to Alice .
Parse:
brought VBD ROOT
+-- Bob NNP nsubj
+-- pizza NN dobj
| +-- the DT det
+-- to IN prep
| +-- Alice NNP pobj
+-- . . punct
- training parser with korean sejong treebank corpus
$ ./sejong/split.sh
$ ./sejong/c2d.sh
$ ./train_sejong.sh
#pretrain parser
...
INFO:tensorflow:Seconds elapsed in evaluation: 13.62, eval metric: 92.66%
...
#evaluate pretrained parser
INFO:tensorflow:Seconds elapsed in evaluation: 121.55, eval metric: 94.03%
INFO:tensorflow:Seconds elapsed in evaluation: 15.50, eval metric: 93.41%
INFO:tensorflow:Seconds elapsed in evaluation: 15.25, eval metric: 93.28%
...
#evaluate pretrained parser by eoj-based
accuracy(UAS) = 0.908898
accuracy(UAS) = 0.875776
accuracy(UAS) = 0.875855
...
#train parser
INFO:tensorflow:Seconds elapsed in evaluation: 137.36, eval metric: 94.12%
...
#evaluate parser
INFO:tensorflow:Seconds elapsed in evaluation: 930.60, eval metric: 96.56%
INFO:tensorflow:Seconds elapsed in evaluation: 118.21, eval metric: 94.07%
INFO:tensorflow:Seconds elapsed in evaluation: 116.51, eval metric: 94.07%
...
#evaluate parser by eoj-based
accuracy(UAS) = 0.932052
accuracy(UAS) = 0.881340
accuracy(UAS) = 0.882807
...