Skip to content

Commit

Permalink
avcodec/aom_film_grain: implement AFGS1
Browse files Browse the repository at this point in the history
Based on the AOMedia Film Grain Synthesis 1 (AFGS1) spec:
  https://aomediacodec.github.io/afgs1-spec/

The parsing has been changed substantially relative to the AV1 film
grain OBU. In particular:

1. There is the possibility of maintaining multiple independent film
   grain parameter sets, and decoders are recommended to pick the one
   most appropriate for the intended display resolution. This is to
   support scalable / multi-level codecs, although this could also be
   used to e.g. switch between different grain profiles without having
   to re-signal the appropriate coefficients.

2. Supporting this, it's possible to *predict* the grain coefficients
   from previously signalled parameter sets, transmitting only the
   residual.

3. When not predicting, the parameter sets are now stored as a series of
   increments, rather than being directly transmitted.

I placed this parser in its own file, rather than h2645_sei.c, since
nothing in the generic AFGS1 film grain payload is specific to T.35.

Note: Due to an ambiguity/mistake in the specification, the parsing of
      AR coefficients is possibly incorrect. See for details:

      AOMediaCodec/afgs1-spec#115
  • Loading branch information
haasn committed Feb 29, 2024
1 parent 0c6e137 commit 6225826
Show file tree
Hide file tree
Showing 2 changed files with 252 additions and 0 deletions.
227 changes: 227 additions & 0 deletions libavcodec/aom_film_grain.c
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
#include "libavutil/imgutils.h"

#include "aom_film_grain.h"
#include "get_bits.h"

// Common/shared helpers (not dependent on BIT_DEPTH)
static inline int get_random_number(const int bits, unsigned *const state) {
Expand Down Expand Up @@ -118,6 +119,232 @@ int ff_aom_apply_film_grain(AVFrame *out, const AVFrame *in,
return AVERROR_INVALIDDATA;
}

int ff_aom_parse_film_grain_sets(AVFilmGrainAOMParamSets *s,
const uint8_t *payload, int payload_size)
{
GetBitContext gbc, *gb = &gbc;
AVFilmGrainAOMParams *aom;
AVFilmGrainAOMParamSet *fgps, *ref = NULL;
int ret, num_sets, n, i, uv, num_y_coeffs, update_grain, luma_only;

ret = init_get_bits8(gb, payload, payload_size);
if (ret < 0)
return ret;

s->enable = get_bits1(gb);
if (!s->enable)
return 0;

skip_bits(gb, 4); // reserved
num_sets = get_bits(gb, 3);
for (n = 0; n < num_sets; n++) {
int payload_4byte, payload_size, set_idx, apply_units_log2, vsc_flag;
int predict_scaling, predict_y_scaling, predict_uv_scaling[2];
int payload_bits, start_position;

start_position = get_bits_count(gb);
payload_4byte = get_bits1(gb);
payload_size = get_bits(gb, payload_4byte ? 2 : 8);
set_idx = get_bits(gb, 3);
fgps = &s->sets[set_idx];

fgps->apply_grain = get_bits1(gb);
if (!fgps->apply_grain)
continue;

fgps->grain_seed = get_bits(gb, 16);
update_grain = get_bits1(gb);
if (!update_grain)
continue;

apply_units_log2 = get_bits(gb, 4);
fgps->apply_width = get_bits(gb, 12) << apply_units_log2;
fgps->apply_height = get_bits(gb, 12) << apply_units_log2;
luma_only = get_bits1(gb);
if (luma_only) {
fgps->subx = fgps->suby = 0;
} else {
fgps->subx = get_bits1(gb);
fgps->suby = get_bits1(gb);
}

vsc_flag = get_bits1(gb); // video_signal_characteristics_flag
if (vsc_flag) {
int cicp_flag;
skip_bits(gb, 3); // bit_depth_minus8
cicp_flag = get_bits1(gb);
if (cicp_flag)
skip_bits(gb, 8 + 8 + 8 + 1); // cicp_info
}

aom = &fgps->params;
predict_scaling = get_bits1(gb);
if (predict_scaling && (!ref || ref == fgps))
goto error; // prediction must be from valid, different set

predict_y_scaling = predict_scaling ? get_bits1(gb) : 0;
if (predict_y_scaling) {
int y_scale, y_offset, bits_res;
y_scale = get_bits(gb, 9) - 256;
y_offset = get_bits(gb, 9) - 256;
bits_res = get_bits(gb, 3);
if (bits_res) {
int res[14], pred, granularity;
aom->num_y_points = ref->params.num_y_points;
for (i = 0; i < aom->num_y_points; i++)
res[i] = get_bits(gb, bits_res);
granularity = get_bits(gb, 3);
for (i = 0; i < aom->num_y_points; i++) {
pred = ref->params.y_points[i][1];
pred = ((pred * y_scale + 8) >> 4) + y_offset;
pred += (res[i] - (1 << (bits_res - 1))) * granularity;
aom->y_points[i][0] = ref->params.y_points[i][0];
aom->y_points[i][1] = av_clip_uint8(pred);
}
}
} else {
aom->num_y_points = get_bits(gb, 4);
if (aom->num_y_points > 14) {
goto error;
} else if (aom->num_y_points) {
int bits_inc, bits_scaling;
int y_value = 0;
bits_inc = get_bits(gb, 3) + 1;
bits_scaling = get_bits(gb, 2) + 5;
for (i = 0; i < aom->num_y_points; i++) {
y_value += get_bits(gb, bits_inc);
if (y_value > UINT8_MAX)
goto error;
aom->y_points[i][0] = y_value;
aom->y_points[i][1] = get_bits(gb, bits_scaling);
}
}
}

if (luma_only) {
aom->chroma_scaling_from_luma = 0;
aom->num_uv_points[0] = aom->num_uv_points[1] = 0;
} else {
aom->chroma_scaling_from_luma = get_bits1(gb);
if (aom->chroma_scaling_from_luma) {
aom->num_uv_points[0] = aom->num_uv_points[1] = 0;
} else {
for (uv = 0; uv < 2; uv++) {
predict_uv_scaling[uv] = predict_scaling ? get_bits1(gb) : 0;
if (predict_uv_scaling[uv]) {
int uv_scale, uv_offset, bits_res;
uv_scale = get_bits(gb, 9) - 256;
uv_offset = get_bits(gb, 9) - 256;
bits_res = get_bits(gb, 3);
aom->uv_mult[uv] = ref->params.uv_mult[uv];
aom->uv_mult_luma[uv] = ref->params.uv_mult_luma[uv];
aom->uv_offset[uv] = ref->params.uv_offset[uv];
if (bits_res) {
int res[10], pred, granularity;
aom->num_uv_points[uv] = ref->params.num_uv_points[uv];
for (i = 0; i < aom->num_uv_points[uv]; i++)
res[i] = get_bits(gb, bits_res);
granularity = get_bits(gb, 3);
for (i = 0; i < aom->num_uv_points[uv]; i++) {
pred = ref->params.uv_points[uv][i][1];
pred = ((pred * uv_scale + 8) >> 4) + uv_offset;
pred += (res[i] - (1 << (bits_res - 1))) * granularity;
aom->uv_points[uv][i][0] = ref->params.uv_points[uv][i][0];
aom->uv_points[uv][i][1] = av_clip_uint8(pred);
}
}
} else {
int bits_inc, bits_scaling, uv_offset;
int uv_value = 0;
aom->num_uv_points[uv] = get_bits(gb, 4);
if (aom->num_uv_points[uv] > 10)
goto error;
bits_inc = get_bits(gb, 3) + 1;
bits_scaling = get_bits(gb, 2) + 5;
uv_offset = get_bits(gb, 8);
for (i = 0; i < aom->num_uv_points[uv]; i++) {
uv_value += get_bits(gb, bits_inc);
if (uv_value > UINT8_MAX)
goto error;
aom->uv_points[uv][i][0] = uv_value;
aom->uv_points[uv][i][1] = get_bits(gb, bits_scaling) + uv_offset;
}
}
}
}
}

aom->scaling_shift = get_bits(gb, 2) + 8;
aom->ar_coeff_lag = get_bits(gb, 2);
num_y_coeffs = 2 * aom->ar_coeff_lag * (aom->ar_coeff_lag + 1);
if (aom->num_y_points) {
int ar_bits = get_bits(gb, 2) + 5;
for (i = 0; i < num_y_coeffs; i++)
aom->ar_coeffs_y[i] = get_bits(gb, ar_bits) - (1 << (ar_bits - 1));
}
for (uv = 0; uv < 2; uv++) {
if (aom->chroma_scaling_from_luma || aom->num_uv_points[uv]) {
int ar_bits = get_bits(gb, 2) + 5;
for (i = 0; i < num_y_coeffs + !!aom->num_y_points; i++)
aom->ar_coeffs_uv[uv][i] = get_bits(gb, ar_bits) - (1 << (ar_bits - 1));
}
}
aom->ar_coeff_shift = get_bits(gb, 2) + 6;
aom->grain_scale_shift = get_bits(gb, 2);
for (uv = 0; uv < 2; uv++) {
if (aom->num_uv_points[uv] && !predict_uv_scaling[uv]) {
aom->uv_mult[uv] = get_bits(gb, 8) - 128;
aom->uv_mult_luma[uv] = get_bits(gb, 8) - 128;
aom->uv_offset[uv] = get_bits(gb, 9) - 256;
}
}
aom->overlap_flag = get_bits1(gb);
aom->limit_output_range = get_bits1(gb);

// use first set as reference only if it was fully transmitted
if (n == 0)
ref = fgps;

payload_bits = get_bits_count(gb) - start_position;
if (payload_bits > payload_size * 8)
goto error;
skip_bits(gb, payload_size * 8 - payload_bits);
}
return 0;

error:
s->enable = 0;
return AVERROR_INVALIDDATA;
}

const AVFilmGrainAOMParamSet *ff_aom_select_film_grain_set(const AVFilmGrainAOMParamSets *s,
const AVFrame *frame)
{
const AVFilmGrainAOMParamSet *fgps, *best;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
if (!s->enable || !desc)
return NULL;

best = NULL;
for (int i = 0; i < 8; i++) {
fgps = &s->sets[i];
if (!fgps->apply_width ||
!fgps->apply_height ||
fgps->apply_width > frame->width ||
fgps->apply_height > frame->height ||
fgps->subx != desc->log2_chroma_w ||
fgps->suby != desc->log2_chroma_h)
continue;

if (!best ||
fgps->apply_width > best->apply_width ||
fgps->apply_height > best->apply_height)
best = fgps;
}

return best;
}

// Taken from the AV1 spec. Range is [-2048, 2047], mean is 0 and stddev is 512
static const int16_t gaussian_sequence[2048] = {
56, 568, -180, 172, 124, -84, 172, -64, -900, 24, 820,
Expand Down
25 changes: 25 additions & 0 deletions libavcodec/aom_film_grain.h
Original file line number Diff line number Diff line change
Expand Up @@ -30,9 +30,34 @@

#include "libavutil/film_grain_params.h"

// Stand-alone AFGS1 metadata parameter set
typedef struct AVFilmGrainAOMParamSet {
int apply_grain;
int apply_width;
int apply_height;
int subx, suby;
uint16_t grain_seed;
AVFilmGrainAOMParams params;
} AVFilmGrainAOMParamSet;

typedef struct AVFilmGrainAOMParamSets {
int enable;
AVFilmGrainAOMParamSet sets[8];
} AVFilmGrainAOMParamSets;

// Synthesizes film grain on top of `in` and stores the result to `out`. `out`
// must already have been allocated and set to the same size and format as `in`.
int ff_aom_apply_film_grain(AVFrame *out, const AVFrame *in,
const AVFilmGrainParams *params);

// Parse AFGS1 parameter sets from an ITU-T T.35 payload. Returns 0 on success,
// or a negative error code.
int ff_aom_parse_film_grain_sets(AVFilmGrainAOMParamSets *s,
const uint8_t *payload, int payload_size);

// Select the most appropriate film grain parameter set for a given
// frame. Returns the parameter set, or NULL if none was selected.
const AVFilmGrainAOMParamSet *ff_aom_select_film_grain_set(const AVFilmGrainAOMParamSets *s,
const AVFrame *frame);

#endif /* AVCODEC_AOM_FILM_GRAIN_H */

0 comments on commit 6225826

Please sign in to comment.