We rely on both Go and Kafka a lot at Segment. Unfortunately, the state of the Go client libraries for Kafka at the time of this writing was not ideal. The available options were:
-
sarama, which is by far the most popular but is quite difficult to work with. It is poorly documented, the API exposes low level concepts of the Kafka protocol, and it doesn't support recent Go features like contexts. It also passes all values as pointers which causes large numbers of dynamic memory allocations, more frequent garbage collections, and higher memory usage.
-
confluent-kafka-go is a cgo based wrapper around librdkafka, which means it introduces a dependency to a C library on all Go code that uses the package. It has much better documentation than sarama but still lacks support for Go contexts.
-
goka is a more recent Kafka client for Go which focuses on a specific usage pattern. It provides abstractions for using Kafka as a message passing bus between services rather than an ordered log of events, but this is not the typical use case of Kafka for us at Segment. The package also depends on sarama for all interactions with Kafka.
This is where kafka-go
comes into play. It provides both low and high level
APIs for interacting with Kafka, mirroring concepts and implementing interfaces of
the Go standard library to make it easy to use and integrate with existing
software.
In order to better align with our newly adopted Code of Conduct, the kafka-go project has renamed our default branch to main
.
For the full details of our Code Of Conduct see this document.
Version 0.4 introduces a few breaking changes to the repository structure which should have minimal impact on programs and should only manifest at compile time (the runtime behavior should remain unchanged).
-
Programs do not need to import compression packages anymore in order to read compressed messages from kafka. All compression codecs are supported by default.
-
Programs that used the compression codecs directly must be adapted. Compression codecs are now exposed in the
compress
sub-package. -
The experimental
kafka.Client
API has been updated and slightly modified: thekafka.NewClient
function andkafka.ClientConfig
type were removed. Programs now configure the client values directly through exported fields. -
The
kafka.(*Client).ConsumerOffsets
method is now deprecated (along with thekafka.TopicAndGroup
type, and will be removed when we release version 1.0. Programs should use thekafka.(*Client).OffsetFetch
API instead.
With 0.4, we know that we are starting to introduce a bit more complexity in the code, but the plan is to eventually converge towards a simpler and more effective API, allowing us to keep up with Kafka's ever growing feature set, and bringing a more efficient implementation to programs depending on kafka-go.
We truly appreciate everyone's input and contributions, which have made this project way more than what it was when we started it, and we're looking forward to receive more feedback on where we should take it.
kafka-go
is currently compatible with Kafka versions from 0.10.1.0 to 2.1.0. While latest versions will be working,
some features available from the Kafka API may not be implemented yet.
kafka-go
is currently compatible with golang version from 1.15+. To use with older versions of golang use release v0.2.5.
The Conn
type is the core of the kafka-go
package. It wraps around a raw
network connection to expose a low-level API to a Kafka server.
Here are some examples showing typical use of a connection object:
// to produce messages
topic := "my-topic"
partition := 0
conn, err := kafka.DialLeader(context.Background(), "tcp", "localhost:9092", topic, partition)
if err != nil {
log.Fatal("failed to dial leader:", err)
}
conn.SetWriteDeadline(time.Now().Add(10*time.Second))
_, err = conn.WriteMessages(
kafka.Message{Value: []byte("one!")},
kafka.Message{Value: []byte("two!")},
kafka.Message{Value: []byte("three!")},
)
if err != nil {
log.Fatal("failed to write messages:", err)
}
if err := conn.Close(); err != nil {
log.Fatal("failed to close writer:", err)
}
// to consume messages
topic := "my-topic"
partition := 0
conn, err := kafka.DialLeader(context.Background(), "tcp", "localhost:9092", topic, partition)
if err != nil {
log.Fatal("failed to dial leader:", err)
}
conn.SetReadDeadline(time.Now().Add(10*time.Second))
batch := conn.ReadBatch(10e3, 1e6) // fetch 10KB min, 1MB max
b := make([]byte, 10e3) // 10KB max per message
for {
n, err := batch.Read(b)
if err != nil {
break
}
fmt.Println(string(b[:n]))
}
if err := batch.Close(); err != nil {
log.Fatal("failed to close batch:", err)
}
if err := conn.Close(); err != nil {
log.Fatal("failed to close connection:", err)
}
By default kafka has the auto.create.topics.enable='true'
(KAFKA_AUTO_CREATE_TOPICS_ENABLE='true'
in the wurstmeister/kafka kafka docker image). If this value is set to 'true'
then topics will be created as a side effect of kafka.DialLeader
like so:
// to create topics when auto.create.topics.enable='true'
conn, err := kafka.DialLeader(context.Background(), "tcp", "localhost:9092", "my-topic", 0)
if err != nil {
panic(err.Error())
}
If auto.create.topics.enable='false'
then you will need to create topics explicitly like so:
// to create topics when auto.create.topics.enable='false'
topic := "my-topic"
conn, err := kafka.Dial("tcp", "localhost:9092")
if err != nil {
panic(err.Error())
}
defer conn.Close()
controller, err := conn.Controller()
if err != nil {
panic(err.Error())
}
var controllerConn *kafka.Conn
controllerConn, err = kafka.Dial("tcp", net.JoinHostPort(controller.Host, strconv.Itoa(controller.Port)))
if err != nil {
panic(err.Error())
}
defer controllerConn.Close()
topicConfigs := []kafka.TopicConfig{
kafka.TopicConfig{
Topic: topic,
NumPartitions: 1,
ReplicationFactor: 1,
},
}
err = controllerConn.CreateTopics(topicConfigs...)
if err != nil {
panic(err.Error())
}
// to connect to the kafka leader via an existing non-leader connection rather than using DialLeader
conn, err := kafka.Dial("tcp", "localhost:9092")
if err != nil {
panic(err.Error())
}
defer conn.Close()
controller, err := conn.Controller()
if err != nil {
panic(err.Error())
}
var connLeader *kafka.Conn
connLeader, err = kafka.Dial("tcp", net.JoinHostPort(controller.Host, strconv.Itoa(controller.Port)))
if err != nil {
panic(err.Error())
}
defer connLeader.Close()
conn, err := kafka.Dial("tcp", "localhost:9092")
if err != nil {
panic(err.Error())
}
defer conn.Close()
partitions, err := conn.ReadPartitions()
if err != nil {
panic(err.Error())
}
m := map[string]struct{}{}
for _, p := range partitions {
m[p.Topic] = struct{}{}
}
for k := range m {
fmt.Println(k)
}
Because it is low level, the Conn
type turns out to be a great building block
for higher level abstractions, like the Reader
for example.
A Reader
is another concept exposed by the kafka-go
package, which intends
to make it simpler to implement the typical use case of consuming from a single
topic-partition pair.
A Reader
also automatically handles reconnections and offset management, and
exposes an API that supports asynchronous cancellations and timeouts using Go
contexts.
Note that it is important to call Close()
on a Reader
when a process exits.
The kafka server needs a graceful disconnect to stop it from continuing to
attempt to send messages to the connected clients. The given example will not
call Close()
if the process is terminated with SIGINT (ctrl-c at the shell) or
SIGTERM (as docker stop or a kubernetes restart does). This can result in a
delay when a new reader on the same topic connects (e.g. new process started
or new container running). Use a signal.Notify
handler to close the reader on
process shutdown.
// make a new reader that consumes from topic-A, partition 0, at offset 42
r := kafka.NewReader(kafka.ReaderConfig{
Brokers: []string{"localhost:9092"},
Topic: "topic-A",
Partition: 0,
MinBytes: 10e3, // 10KB
MaxBytes: 10e6, // 10MB
})
r.SetOffset(42)
for {
m, err := r.ReadMessage(context.Background())
if err != nil {
break
}
fmt.Printf("message at offset %d: %s = %s\n", m.Offset, string(m.Key), string(m.Value))
}
if err := r.Close(); err != nil {
log.Fatal("failed to close reader:", err)
}
kafka-go
also supports Kafka consumer groups including broker managed offsets.
To enable consumer groups, simply specify the GroupID in the ReaderConfig.
ReadMessage automatically commits offsets when using consumer groups.
// make a new reader that consumes from topic-A
r := kafka.NewReader(kafka.ReaderConfig{
Brokers: []string{"localhost:9092"},
GroupID: "consumer-group-id",
Topic: "topic-A",
MinBytes: 10e3, // 10KB
MaxBytes: 10e6, // 10MB
})
for {
m, err := r.ReadMessage(context.Background())
if err != nil {
break
}
fmt.Printf("message at topic/partition/offset %v/%v/%v: %s = %s\n", m.Topic, m.Partition, m.Offset, string(m.Key), string(m.Value))
}
if err := r.Close(); err != nil {
log.Fatal("failed to close reader:", err)
}
There are a number of limitations when using consumer groups:
(*Reader).SetOffset
will return an error when GroupID is set(*Reader).Offset
will always return-1
when GroupID is set(*Reader).Lag
will always return-1
when GroupID is set(*Reader).ReadLag
will return an error when GroupID is set(*Reader).Stats
will return a partition of-1
when GroupID is set
kafka-go
also supports explicit commits. Instead of calling ReadMessage
,
call FetchMessage
followed by CommitMessages
.
ctx := context.Background()
for {
m, err := r.FetchMessage(ctx)
if err != nil {
break
}
fmt.Printf("message at topic/partition/offset %v/%v/%v: %s = %s\n", m.Topic, m.Partition, m.Offset, string(m.Key), string(m.Value))
if err := r.CommitMessages(ctx, m); err != nil {
log.Fatal("failed to commit messages:", err)
}
}
When committing messages in consumer groups, the message with the highest offset
for a given topic/partition determines the value of the committed offset for
that partition. For example, if messages at offset 1, 2, and 3 of a single
partition were retrieved by call to FetchMessage
, calling CommitMessages
with message offset 3 will also result in committing the messages at offsets 1
and 2 for that partition.
By default, CommitMessages will synchronously commit offsets to Kafka. For improved performance, you can instead periodically commit offsets to Kafka by setting CommitInterval on the ReaderConfig.
// make a new reader that consumes from topic-A
r := kafka.NewReader(kafka.ReaderConfig{
Brokers: []string{"localhost:9092"},
GroupID: "consumer-group-id",
Topic: "topic-A",
MinBytes: 10e3, // 10KB
MaxBytes: 10e6, // 10MB
CommitInterval: time.Second, // flushes commits to Kafka every second
})
To produce messages to Kafka, a program may use the low-level Conn
API, but
the package also provides a higher level Writer
type which is more appropriate
to use in most cases as it provides additional features:
- Automatic retries and reconnections on errors.
- Configurable distribution of messages across available partitions.
- Synchronous or asynchronous writes of messages to Kafka.
- Asynchronous cancellation using contexts.
- Flushing of pending messages on close to support graceful shutdowns.
// make a writer that produces to topic-A, using the least-bytes distribution
w := &kafka.Writer{
Addr: kafka.TCP("localhost:9092"),
Topic: "topic-A",
Balancer: &kafka.LeastBytes{},
}
err := w.WriteMessages(context.Background(),
kafka.Message{
Key: []byte("Key-A"),
Value: []byte("Hello World!"),
},
kafka.Message{
Key: []byte("Key-B"),
Value: []byte("One!"),
},
kafka.Message{
Key: []byte("Key-C"),
Value: []byte("Two!"),
},
)
if err != nil {
log.Fatal("failed to write messages:", err)
}
if err := w.Close(); err != nil {
log.Fatal("failed to close writer:", err)
}
Normally, the WriterConfig.Topic
is used to initialize a single-topic writer.
By excluding that particular configuration, you are given the ability to define
the topic on a per-message basis by setting Message.Topic
.
w := &kafka.Writer{
Addr: kafka.TCP("localhost:9092"),
// NOTE: When Topic is not defined here, each Message must define it instead.
Balancer: &kafka.LeastBytes{},
}
err := w.WriteMessages(context.Background(),
// NOTE: Each Message has Topic defined, otherwise an error is returned.
kafka.Message{
Topic: "topic-A",
Key: []byte("Key-A"),
Value: []byte("Hello World!"),
},
kafka.Message{
Topic: "topic-B",
Key: []byte("Key-B"),
Value: []byte("One!"),
},
kafka.Message{
Topic: "topic-C",
Key: []byte("Key-C"),
Value: []byte("Two!"),
},
)
if err != nil {
log.Fatal("failed to write messages:", err)
}
if err := w.Close(); err != nil {
log.Fatal("failed to close writer:", err)
}
NOTE: These 2 patterns are mutually exclusive, if you set Writer.Topic
,
you must not also explicitly define Message.Topic
on the messages you are
writing. The opposite applies when you do not define a topic for the writer.
The Writer
will return an error if it detects this ambiguity.
If you're switching from Sarama and need/want to use the same algorithm for message
partitioning, you can use the kafka.Hash
balancer. kafka.Hash
routes
messages to the same partitions that Sarama's default partitioner would route to.
w := &kafka.Writer{
Addr: kafka.TCP("localhost:9092"),
Topic: "topic-A",
Balancer: &kafka.Hash{},
}
Use the kafka.CRC32Balancer
balancer to get the same behaviour as librdkafka's
default consistent_random
partition strategy.
w := &kafka.Writer{
Addr: kafka.TCP("localhost:9092"),
Topic: "topic-A",
Balancer: kafka.CRC32Balancer{},
}
Use the kafka.Murmur2Balancer
balancer to get the same behaviour as the canonical
Java client's default partitioner. Note: the Java class allows you to directly specify
the partition which is not permitted.
w := &kafka.Writer{
Addr: kafka.TCP("localhost:9092"),
Topic: "topic-A",
Balancer: kafka.Murmur2Balancer{},
}
Compression can be enabled on the Writer
by setting the Compression
field:
w := &kafka.Writer{
Addr: kafka.TCP("localhost:9092"),
Topic: "topic-A",
Compression: kafka.Snappy,
}
The Reader
will by determine if the consumed messages are compressed by
examining the message attributes. However, the package(s) for all expected
codecs must be imported so that they get loaded correctly.
Note: in versions prior to 0.4 programs had to import compression packages to install codecs and support reading compressed messages from kafka. This is no longer the case and import of the compression packages are now no-ops.
For a bare bones Conn type or in the Reader/Writer configs you can specify a dialer option for TLS support. If the TLS field is nil, it will not connect with TLS.
dialer := &kafka.Dialer{
Timeout: 10 * time.Second,
DualStack: true,
TLS: &tls.Config{...tls config...},
}
conn, err := dialer.DialContext(ctx, "tcp", "localhost:9093")
dialer := &kafka.Dialer{
Timeout: 10 * time.Second,
DualStack: true,
TLS: &tls.Config{...tls config...},
}
r := kafka.NewReader(kafka.ReaderConfig{
Brokers: []string{"localhost:9093"},
GroupID: "consumer-group-id",
Topic: "topic-A",
Dialer: dialer,
})
dialer := &kafka.Dialer{
Timeout: 10 * time.Second,
DualStack: true,
TLS: &tls.Config{...tls config...},
}
w := kafka.NewWriter(kafka.WriterConfig{
Brokers: []string{"localhost:9093"},
Topic: "topic-A",
Balancer: &kafka.Hash{},
Dialer: dialer,
})
You can specify an option on the Dialer
to use SASL authentication. The Dialer
can be used directly to open a Conn
or it can be passed to a Reader
or Writer
via their respective configs. If the SASLMechanism
field is nil
, it will not authenticate with SASL.
mechanism := plain.Mechanism{
Username: "username",
Password: "password",
}
mechanism, err := scram.Mechanism(scram.SHA512, "username", "password")
if err != nil {
panic(err)
}
mechanism, err := scram.Mechanism(scram.SHA512, "username", "password")
if err != nil {
panic(err)
}
dialer := &kafka.Dialer{
Timeout: 10 * time.Second,
DualStack: true,
SASLMechanism: mechanism,
}
conn, err := dialer.DialContext(ctx, "tcp", "localhost:9093")
mechanism, err := scram.Mechanism(scram.SHA512, "username", "password")
if err != nil {
panic(err)
}
dialer := &kafka.Dialer{
Timeout: 10 * time.Second,
DualStack: true,
SASLMechanism: mechanism,
}
r := kafka.NewReader(kafka.ReaderConfig{
Brokers: []string{"localhost:9093"},
GroupID: "consumer-group-id",
Topic: "topic-A",
Dialer: dialer,
})
mechanism, err := scram.Mechanism(scram.SHA512, "username", "password")
if err != nil {
panic(err)
}
// Transports are responsible for managing connection pools and other resources,
// it's generally best to create a few of these and share them across your
// application.
sharedTransport := &kafka.Transport{
SASLMechanism: mechanism,
}
w := kafka.Writer{
Addr: kafka.TCP("localhost:9092"),
Topic: "topic-A",
Balancer: &kafka.Hash{},
Transport: sharedTransport,
}
mechanism, err := scram.Mechanism(scram.SHA512, "username", "password")
if err != nil {
panic(err)
}
// Transports are responsible for managing connection pools and other resources,
// it's generally best to create a few of these and share them across your
// application.
sharedTransport := &kafka.Transport{
SASLMechanism: mechanism,
}
client := &kafka.Client{
Addr: kafka.TCP("localhost:9092"),
Timeout: 10 * time.Second,
Transport: sharedTransport,
}
startTime := time.Now().Add(-time.Hour)
endTime := time.Now()
batchSize := int(10e6) // 10MB
r := kafka.NewReader(kafka.ReaderConfig{
Brokers: []string{"localhost:9092"},
Topic: "my-topic1",
Partition: 0,
MinBytes: batchSize,
MaxBytes: batchSize,
})
r.SetOffsetAt(context.Background(), startTime)
for {
m, err := r.ReadMessage(context.Background())
if err != nil {
break
}
if m.Time.After(endTime) {
break
}
// TODO: process message
fmt.Printf("message at offset %d: %s = %s\n", m.Offset, string(m.Key), string(m.Value))
}
if err := r.Close(); err != nil {
log.Fatal("failed to close reader:", err)
}
Subtle behavior changes in later Kafka versions have caused some historical tests to break, if you are running against Kafka 2.3.1 or later, exporting the KAFKA_SKIP_NETTEST=1
environment variables will skip those tests.
Run Kafka locally in docker
docker-compose up -d
Run tests
KAFKA_VERSION=2.3.1 \
KAFKA_SKIP_NETTEST=1 \
go test -race ./...