- pytorch & dgl implementation of Stacked and Reconstructed GCN for Recommender Systems
- paper : STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems
python main.py --data_name=ml-100k train --iteration=2000 --in_feats_dim=32
model : 2b1l -rm
Best iter : 1400
Best valid RMSE : 0.9013
Best test RMSE : 0.9150
model : 2b1l
reported RMSE : 0.8950
python main.py --data_name=ml-1m train --iteration=2000 --in_feats_dim=64
model : 2b1l -rm
Best iter : 1990
Best valid RMSE : 0.8565
Best test RMSE : 0.8547
model : 2b1l
reported RMSE : 0.833
- only transductive rating prediction is available
- apply sample-and-remove strategy and change model
2b1l -rm
to2b1l
- implement inductive rating prediction
- masked learning
- mini-batch learning