Skip to content

pytorch implementation of Stacked and Reconstructed GCN for Recommender Systems (https://arxiv.org/pdf/1905.13129.pdf)

Notifications You must be signed in to change notification settings

haeuuu/STAR-GCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STAR-GCN


ML-100K

Usage

python main.py --data_name=ml-100k train --iteration=2000 --in_feats_dim=32

Results

model : 2b1l -rm

Best iter : 1400
Best valid RMSE : 0.9013
Best test RMSE : 0.9150

model : 2b1l

reported RMSE : 0.8950

ML-1M

Usage

python main.py --data_name=ml-1m train --iteration=2000 --in_feats_dim=64

Results

model : 2b1l -rm

Best iter : 1990
Best valid RMSE : 0.8565
Best test RMSE : 0.8547

model : 2b1l

reported RMSE : 0.833

Notes

  • only transductive rating prediction is available

TODO

  • apply sample-and-remove strategy and change model 2b1l -rm to 2b1l
  • implement inductive rating prediction
  • masked learning
  • mini-batch learning

About

pytorch implementation of Stacked and Reconstructed GCN for Recommender Systems (https://arxiv.org/pdf/1905.13129.pdf)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages