Skip to content

haoran1062/yolov3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

this repo is a YOLO v3 Simple Implementation by Pytorch (still debuging have some bug to fix)

  • backbones will support: resnet18, resnet50, densenet121 and other backbones
  • finished: backbone with resnet18, FPN module, YOLO layer, Dataloader, Loss, train
  • visual by visdom

bugs

    1. cause of encoder and compute loss write in the YOLO modules, when multi-GPU training, Tensors not on the same GPU card(target Tensor on GPU0, but pred Tensor is on the module's running GPU) but single GPU could run, try to remove compute loss and encoder to cuda:0.
run train
  • change Hyperparameters and data path in configs/resnet18_yolo_style_fpn_yolov3.py
  • prepare data: same like origin darknet yolo do
  • run nohup python -m visdom.server & to start visdom server
  • python train.py
  • if you wanna try little datasets, yoloDataset(xxx,... little_train=8) mean only use first 8 images to train
some visual results
  • YOLOv3-resnet18
    • detect_results
    • detect_results
    • detect_results
    • detect_results
    • detect_results
    • detect_results
TODO
  • fix bugs
  • add backbones: resnet50, densenet121 and so on
  • add eval scripts
  • add test mAP(maybe use cocoapi)
  • find better train params
  • improve performance
Requirements
  • python3
  • pytorch 1.0+
  • visdom
  • torchsummary
  • torchvision
  • cv2
  • PIL
  • numpy

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages