- backbones will support:
resnet18
,resnet50
,densenet121
and other backbones - finished:
backbone with resnet18
,FPN module
,YOLO layer
,Dataloader
,Loss
,train
- visual by
visdom
-
cause of encoder and compute loss write in the YOLO modules, when multi-GPU training, Tensors not on the same GPU card(target Tensor on GPU0, but pred Tensor is on the module's running GPU) but single GPU could run, try to remove compute loss and encoder tocuda:0
.
- change Hyperparameters and data path in
configs/resnet18_yolo_style_fpn_yolov3.py
- prepare data: same like origin darknet yolo do
- run
nohup python -m visdom.server &
to start visdom server python train.py
- if you wanna try little datasets,
yoloDataset(xxx,... little_train=8)
mean only use first 8 images to train
- fix bugs
- add backbones:
resnet50
,densenet121
and so on - add eval scripts
- add test mAP(maybe use cocoapi)
- find better train params
- improve performance
- python3
- pytorch 1.0+
- visdom
- torchsummary
- torchvision
- cv2
- PIL
- numpy