Skip to content
/ DIBS Public

[CVPR 2024] DIBS: Enhancing Dense Video Captioning with Unlabeled Videos via Pseudo Boundary Enrichment and Online Refinement

Notifications You must be signed in to change notification settings

haowuxc/DIBS

Repository files navigation

DIBS

Official implementation for "DIBS: Enhancing Dense Video Captioning with Unlabeled Videos via Pseudo Boundary Enrichment and Online Refinement" (CVPR 2024)

[Paper]

Updates

  • 2024.6.28: Release code
  • Release extracted features

Code

Environment Configuration

conda create -y -n dibs python=3.8
conda activate dibs
pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116
conda install ffmpeg
pip install -r requirement.txt
git clone --recursive https://github.com/haowuxc/DIBS.git
cd DIBS/pdvc/ops
sh make.sh

Training and Evaluation

  1. Training with pseudo boundaries on YouCook2 and ActivityNet.
python train.py --cfg_path cfgs/anet_clip_refine.yml
python train.py --cfg_path cfgs/yc2_univl_refine.yml
  1. Pretraining using HowTo100M video subset.
python train.py --cfg_path cfgs/howto-anet_anet_clip_refine.yml
python train.py --cfg_path cfgs/howto-yc2_yc2_univl_refine.yml
  1. Fine-tuning on YouCook2 and ActivityNet.
python train_ft2_gt.py --cfg_path cfgs/howto-anet_anet_clip_refine.yml
python train_ft2_gt.py --cfg_path cfgs/howto-yc2_yc2_univl_refine.yml
  1. Evaluation on YouCook2 and ActivityNet.
YouCook2
python eval.py  --eval_save_dir SAVE_PATH --eval_folder CONFIG_NAME --eval_caption_file data/yc2/captiondata/yc2_val.json --eval_proposal_type queries --gpu_id 0

# ActivityNet
python eval.py  --eval_save_dir SAVE_PATH --eval_folder CONFIG_NAME --eval_caption_file data/anet/captiondata/val_1.json --eval_proposal_type queries --gpu_id 0

Note:

  • SAVE_PATH is the folder where all files will be stored.
  • CONFIG_NAME is the subfolder path of the specified configuration, i.e. model_path = os.path.join(SAVE_PATH, CONFIG_NAME).

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Wu_2024_CVPR,
    author    = {Wu, Hao and Liu, Huabin and Qiao, Yu and Sun, Xiao},
    title     = {DIBS: Enhancing Dense Video Captioning with Unlabeled Videos via Pseudo Boundary Enrichment and Online Refinement},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {18699-18708}
}

Acknowledgement

We would like to thank the authors of the PDVC paper and the Drop-DTW paper for making their code available as open-source. Their work has greatly contributed to our project.

About

[CVPR 2024] DIBS: Enhancing Dense Video Captioning with Unlabeled Videos via Pseudo Boundary Enrichment and Online Refinement

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages