-
Notifications
You must be signed in to change notification settings - Fork 9.6k
/
field_reader.go
343 lines (299 loc) · 8.17 KB
/
field_reader.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
package schema
import (
"fmt"
"strconv"
"strings"
)
// FieldReaders are responsible for decoding fields out of data into
// the proper typed representation. ResourceData uses this to query data
// out of multiple sources: config, state, diffs, etc.
type FieldReader interface {
ReadField([]string) (FieldReadResult, error)
}
// FieldReadResult encapsulates all the resulting data from reading
// a field.
type FieldReadResult struct {
// Value is the actual read value. NegValue is the _negative_ value
// or the items that should be removed (if they existed). NegValue
// doesn't make sense for primitives but is important for any
// container types such as maps, sets, lists.
Value interface{}
ValueProcessed interface{}
// Exists is true if the field was found in the data. False means
// it wasn't found if there was no error.
Exists bool
// Computed is true if the field was found but the value
// is computed.
Computed bool
}
// ValueOrZero returns the value of this result or the zero value of the
// schema type, ensuring a consistent non-nil return value.
func (r *FieldReadResult) ValueOrZero(s *Schema) interface{} {
if r.Value != nil {
return r.Value
}
return s.ZeroValue()
}
// SchemasForFlatmapPath tries its best to find a sequence of schemas that
// the given dot-delimited attribute path traverses through.
func SchemasForFlatmapPath(path string, schemaMap map[string]*Schema) []*Schema {
parts := strings.Split(path, ".")
return addrToSchema(parts, schemaMap)
}
// addrToSchema finds the final element schema for the given address
// and the given schema. It returns all the schemas that led to the final
// schema. These are in order of the address (out to in).
func addrToSchema(addr []string, schemaMap map[string]*Schema) []*Schema {
current := &Schema{
Type: typeObject,
Elem: schemaMap,
}
// If we aren't given an address, then the user is requesting the
// full object, so we return the special value which is the full object.
if len(addr) == 0 {
return []*Schema{current}
}
result := make([]*Schema, 0, len(addr))
for len(addr) > 0 {
k := addr[0]
addr = addr[1:]
REPEAT:
// We want to trim off the first "typeObject" since its not a
// real lookup that people do. i.e. []string{"foo"} in a structure
// isn't {typeObject, typeString}, its just a {typeString}.
if len(result) > 0 || current.Type != typeObject {
result = append(result, current)
}
switch t := current.Type; t {
case TypeBool, TypeInt, TypeFloat, TypeString:
if len(addr) > 0 {
return nil
}
case TypeList, TypeSet:
isIndex := len(addr) > 0 && addr[0] == "#"
switch v := current.Elem.(type) {
case *Resource:
current = &Schema{
Type: typeObject,
Elem: v.Schema,
}
case *Schema:
current = v
case ValueType:
current = &Schema{Type: v}
default:
// we may not know the Elem type and are just looking for the
// index
if isIndex {
break
}
if len(addr) == 0 {
// we've processed the address, so return what we've
// collected
return result
}
if len(addr) == 1 {
if _, err := strconv.Atoi(addr[0]); err == nil {
// we're indexing a value without a schema. This can
// happen if the list is nested in another schema type.
// Default to a TypeString like we do with a map
current = &Schema{Type: TypeString}
break
}
}
return nil
}
// If we only have one more thing and the next thing
// is a #, then we're accessing the index which is always
// an int.
if isIndex {
current = &Schema{Type: TypeInt}
break
}
case TypeMap:
if len(addr) > 0 {
switch v := current.Elem.(type) {
case ValueType:
current = &Schema{Type: v}
case *Schema:
current, _ = current.Elem.(*Schema)
default:
// maps default to string values. This is all we can have
// if this is nested in another list or map.
current = &Schema{Type: TypeString}
}
}
case typeObject:
// If we're already in the object, then we want to handle Sets
// and Lists specially. Basically, their next key is the lookup
// key (the set value or the list element). For these scenarios,
// we just want to skip it and move to the next element if there
// is one.
if len(result) > 0 {
lastType := result[len(result)-2].Type
if lastType == TypeSet || lastType == TypeList {
if len(addr) == 0 {
break
}
k = addr[0]
addr = addr[1:]
}
}
m := current.Elem.(map[string]*Schema)
val, ok := m[k]
if !ok {
return nil
}
current = val
goto REPEAT
}
}
return result
}
// readListField is a generic method for reading a list field out of a
// a FieldReader. It does this based on the assumption that there is a key
// "foo.#" for a list "foo" and that the indexes are "foo.0", "foo.1", etc.
// after that point.
func readListField(
r FieldReader, addr []string, schema *Schema) (FieldReadResult, error) {
addrPadded := make([]string, len(addr)+1)
copy(addrPadded, addr)
addrPadded[len(addrPadded)-1] = "#"
// Get the number of elements in the list
countResult, err := r.ReadField(addrPadded)
if err != nil {
return FieldReadResult{}, err
}
if !countResult.Exists {
// No count, means we have no list
countResult.Value = 0
}
// If we have an empty list, then return an empty list
if countResult.Computed || countResult.Value.(int) == 0 {
return FieldReadResult{
Value: []interface{}{},
Exists: countResult.Exists,
Computed: countResult.Computed,
}, nil
}
// Go through each count, and get the item value out of it
result := make([]interface{}, countResult.Value.(int))
for i, _ := range result {
is := strconv.FormatInt(int64(i), 10)
addrPadded[len(addrPadded)-1] = is
rawResult, err := r.ReadField(addrPadded)
if err != nil {
return FieldReadResult{}, err
}
if !rawResult.Exists {
// This should never happen, because by the time the data
// gets to the FieldReaders, all the defaults should be set by
// Schema.
rawResult.Value = nil
}
result[i] = rawResult.Value
}
return FieldReadResult{
Value: result,
Exists: true,
}, nil
}
// readObjectField is a generic method for reading objects out of FieldReaders
// based on the assumption that building an address of []string{k, FIELD}
// will result in the proper field data.
func readObjectField(
r FieldReader,
addr []string,
schema map[string]*Schema) (FieldReadResult, error) {
result := make(map[string]interface{})
exists := false
for field, s := range schema {
addrRead := make([]string, len(addr), len(addr)+1)
copy(addrRead, addr)
addrRead = append(addrRead, field)
rawResult, err := r.ReadField(addrRead)
if err != nil {
return FieldReadResult{}, err
}
if rawResult.Exists {
exists = true
}
result[field] = rawResult.ValueOrZero(s)
}
return FieldReadResult{
Value: result,
Exists: exists,
}, nil
}
// convert map values to the proper primitive type based on schema.Elem
func mapValuesToPrimitive(k string, m map[string]interface{}, schema *Schema) error {
elemType, err := getValueType(k, schema)
if err != nil {
return err
}
switch elemType {
case TypeInt, TypeFloat, TypeBool:
for k, v := range m {
vs, ok := v.(string)
if !ok {
continue
}
v, err := stringToPrimitive(vs, false, &Schema{Type: elemType})
if err != nil {
return err
}
m[k] = v
}
}
return nil
}
func stringToPrimitive(
value string, computed bool, schema *Schema) (interface{}, error) {
var returnVal interface{}
switch schema.Type {
case TypeBool:
if value == "" {
returnVal = false
break
}
if computed {
break
}
v, err := strconv.ParseBool(value)
if err != nil {
return nil, err
}
returnVal = v
case TypeFloat:
if value == "" {
returnVal = 0.0
break
}
if computed {
break
}
v, err := strconv.ParseFloat(value, 64)
if err != nil {
return nil, err
}
returnVal = v
case TypeInt:
if value == "" {
returnVal = 0
break
}
if computed {
break
}
v, err := strconv.ParseInt(value, 0, 0)
if err != nil {
return nil, err
}
returnVal = int(v)
case TypeString:
returnVal = value
default:
panic(fmt.Sprintf("Unknown type: %s", schema.Type))
}
return returnVal, nil
}