- Python 3 (used on 3.6.9)
- Pip package manager (Used on pip 21.3.1 )
- OS (used Linux - Ubuntu)
pip install -r requirements.txt
usage: cli.py [-h] [-iNodes INPUT_NODES] [-hNodes HIDDEN_NODES]
[-hLayers HIDDEN_LAYERS] -epochs EPOCHS [-lr LR] [-seed SEED]
[-gd GRADIENT_DESCENT] [-a ACTIVATION_FUNCTION]
[-c COST_FUNCTION] [-lrm LEARNING_RATE_MODE] [-min-lr MIN_LR]
[-max-lr MAX_LR] [-shuffle] [-mini-batch-size MINI_BATCH_SIZE]
This script runs an ANN network given a set of hyperparameters on the breast-
cancer-wisconsin Dataset https://archive.ics.uci.edu/ml/machine-learning-
Number of epochs
-lr LR, --lr LR Learning rate when using a constant learning rate mode
-seed SEED, --seed SEED
Seed for randomness
-gd GRADIENT_DESCENT, --gradient-descent GRADIENT_DESCENT
0:BATCH 1:MINIBATCH 2:STOCHASTIC
-a ACTIVATION_FUNCTION, --activation-function ACTIVATION_FUNCTION
0:Sigmoid 1:RELU 2:Tanh 3:Linear 4:One
-c COST_FUNCTION, --cost-function COST_FUNCTION
0:LOGISTIC_LOSS 1:CROSS_ENTROPY 2:MEAN_SQUARED_ROOT
-lrm LEARNING_RATE_MODE, --learning_rate_mode LEARNING_RATE_MODE
0:CONSTANT 1:SCHEDULE
-min-lr MIN_LR, --min-lr MIN_LR
Minimum learning rate when using a decay function
-max-lr MAX_LR, --max-lr MAX_LR
Maximum learning rate when using a decay function
-shuffle, --shuffle Shuffle dataset
-mini-batch-size MINI_BATCH_SIZE, --mini-batch-size MINI_BATCH_SIZE
python cli.py -hLayers 1 -hNodes 10 -seed 2 -gd 1 -epochs 100 -lr 0.001 -c 2 -lrm 1
python cli.py -hLayers 1 -hNodes 10 -seed 2 -gd 1 -epochs 100 -lr 0.001 -c 2 -lrm 1
python cli.py -hLayers 1 -hNodes 10 -seed 2 -gd 1 -epochs 100 -lr 0.001 -c 2 -lrm 1