Skip to content

Repository of Paper "Sparse Subspace Clustering with 3D Regularization for Spectral Image Land Cover Segmentation"

Notifications You must be signed in to change notification settings

hdspgroup/3DS-SSC

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sparse Subspace Clustering with 3D Regularization for Spectral Image Land Cover Segmentation

Abstract

The accurate land cover segmentation of remotely sensed spectral images has widespread attention in the Earth observation and remote sensing fields. In the past decade, most of the efforts have focused on the development of different supervised methods for spectral image classification. However, the computer vision community is currently developing unsupervised methods that can adapt to new conditions without leveraging expensive supervision. Among unsupervised classification methods, Sparse Subspace Clustering (SSC) has become a popular tool and has achieved good clustering results on experiments with real data. However, the SSC model does not take into account the spatial information contained in the spectral images; thus, limiting its discrimination capability, and hampering the spatial homogeneity of the clustering results. To address such issue, this paper proposes to incorporate a regularization term to the SSC model, which takes into account the neighboring spatial information of spectral pixels in the scene. Specifically, since spectral pixels belonging to the same land cover material are arranged in common regions, we use a 3D Gaussian filter to perform a 3D convolution on the sparse coefficients, obtaining a piecewise-smooth representation matrix which is used to enforce an averaging constraint in the SSC optimization program. Extensive simulations demonstrate the effectiveness of the proposed method, achieving overall accuracies of 80.41%, 88.26%, and 100% in selected regions of the Indian Pines, Salinas, and University of Pavia hyperspectral datasets.

Workflow

The proposed methodology to enhance the sparse representation coefficients matrix using 3D convolution is depicted in the following picture.

Pavia Subset

This repository contains the MatLab codes of this paper.

Authors

About

Repository of Paper "Sparse Subspace Clustering with 3D Regularization for Spectral Image Land Cover Segmentation"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 100.0%