Skip to content

TensorFlow2 Implementation of "Neural Attentive Item Similarity Model for Recommendation"

Notifications You must be signed in to change notification settings

hegongshan/neural_attentive_item_similarity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NAIS: Neural Attentive Item Similarity Model for Recommendation

A Non-official Implementation of ”NAIS: Neural Attentive Item Similarity Model for Recommendation”.

If you use the codes for your paper as baseline implementation, please cite the link:

https://github.com/hegongshan/neural_attentive_item_similarity

Official Implemenation (Python 2.7 + TensorFlow 1.x): https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model

Requirements

  • Python 3

  • TensorFlow 2.0+

  • NumPy (latest version)

  • SciPy (latest version)

Example to run the codes

  • FISM
python FISM.py --path data --data_set_name ml-1m --epochs 100 --num_neg 4 --embedding_size 16 --lr 0.01 --alpha 0.0 --regs (1e-7, 1e-7, 1e-7)
  • NAIS
python NAIS.py --pretrain 1 --path data --data_set_name ml-1m --epochs 100 --num_neg 4 --embedding_size 16 --lr 0.01

Experimental Results

  • FISM

epochs = 100

HR@10 NDCG@10
ml-1m 0.6526 0.3857
  • NAIS

coming soon...

HR@10 NDCG@10
ml-1m

Last Updated: November 16, 2019

About

TensorFlow2 Implementation of "Neural Attentive Item Similarity Model for Recommendation"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages