Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhancement/select device #488

Merged
merged 59 commits into from
Jun 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
59 commits
Select commit Hold shift + click to select a range
042bea1
rewrite selection
mtar Feb 14, 2020
590e765
fix wrong skippping in test_device.py
mtar Feb 14, 2020
1ae04f4
use variable
mtar Feb 14, 2020
65012ea
add missing references
mtar Feb 14, 2020
32a9ab5
sort functions in distance.py following stylistic guideline
mtar Feb 14, 2020
e3c3ed7
revert
mtar Feb 14, 2020
5832958
add missing device in distance.py
mtar Feb 14, 2020
4d0c63a
add second missing device
mtar Feb 14, 2020
b6b9d5e
update header
mtar Feb 14, 2020
f75b80c
add missing devices
mtar Feb 14, 2020
8eea734
add header test_devices
mtar Feb 14, 2020
8010878
remove old code
mtar Feb 14, 2020
f1ae63f
fix assign new device
mtar Feb 14, 2020
fc3b38e
fix missing heat device change on DNDarray.cpu
mtar Feb 14, 2020
1227183
Merge branch 'master' into enhancement/select-device
mtar Feb 17, 2020
bd45727
changelog
mtar Feb 17, 2020
680ad9c
Merge branch 'master' into enhancement/select-device
Markus-Goetz Feb 18, 2020
7ac3282
Merge branch 'master' into enhancement/select-device
Markus-Goetz Feb 18, 2020
df11692
refactor the 'device header' into a seperate module
mtar Mar 6, 2020
fc02990
formatting
mtar Mar 6, 2020
a44f03b
Merge branch 'master' into enhancement/select-device
mtar Mar 16, 2020
58ec0b1
change envar name & changelog
mtar Mar 23, 2020
335d955
revert heat_device back to ht_device
mtar Mar 23, 2020
768246f
move code to device.py
mtar Mar 24, 2020
c453aab
Merge branch 'master' into enhancement/select-device
mtar Mar 24, 2020
816ff85
add change requests
mtar Mar 31, 2020
613e597
Merge branch 'enhancement/select-device' of github.com:helmholtz-anal…
mtar Mar 31, 2020
9535102
Merge branch 'master' into enhancement/select-device
coquelin77 Apr 16, 2020
54f3a85
removed lasso tests added by github merge
coquelin77 Apr 16, 2020
9e8ed07
super setupclass
mtar Apr 28, 2020
0af54b1
change naming
mtar Apr 28, 2020
cfa24c7
Merge branch 'master' into enhancement/select-device
mtar Apr 28, 2020
04836d7
adjusting names
mtar Apr 28, 2020
cbdaa6b
black formatting
mtar Apr 28, 2020
17e7293
naming conventions
mtar Apr 28, 2020
2374ae8
Merge branch 'master' into enhancement/select-device
Markus-Goetz Apr 29, 2020
bac8ec6
remove unneccessary functions
mtar Apr 29, 2020
ffd6e7b
rename BasicTest completely
mtar Apr 30, 2020
b355451
Merge branch 'master' into enhancement/select-device
Markus-Goetz Apr 30, 2020
36efc80
rename BasicTest to TestCase & remove local cases
mtar Apr 30, 2020
c7c596e
Merge branch 'enhancement/select-device' of github.com:helmholtz-anal…
mtar Apr 30, 2020
a4ca8db
rename class members & update tests
mtar May 4, 2020
79925b5
remove unsused variable
mtar May 4, 2020
093ab69
update test_lasso
mtar May 4, 2020
499cc1e
Merge branch 'master' into enhancement/select-device
mtar Jun 3, 2020
1b178cd
Merge branch 'master' into enhancement/select-device
mtar Jun 4, 2020
1ffe420
Update CHANGELOG.md
mtar Jun 4, 2020
d9eac6c
remove device parameters in new tests
mtar Jun 4, 2020
f269458
Merge branch 'master' into enhancement/select-device
mtar Jun 5, 2020
6eb50f1
Merge branch 'master' into enhancement/select-device
mtar Jun 9, 2020
4e98d25
Merge branch 'master' into enhancement/select-device
mtar Jun 10, 2020
ff195ee
Merge branch 'master' into enhancement/select-device
mtar Jun 16, 2020
2d94115
add raises paragraph
mtar Jun 16, 2020
920b973
black
mtar Jun 16, 2020
6fb10f8
Merge branch 'master' into enhancement/select-device
Markus-Goetz Jun 16, 2020
9799411
update torch_device
mtar Jun 16, 2020
31f2438
Merge branch 'master' into enhancement/select-device
mtar Jun 16, 2020
fbda362
black formatting
mtar Jun 16, 2020
01eccf1
doc
mtar Jun 16, 2020
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Pending Additions

- [#488](https://github.com/helmholtz-analytics/heat/pull/488) Enhancement: Rework of the test device selection.
- [#573](https://github.com/helmholtz-analytics/heat/pull/573) Bugfix: matmul fixes: early out for 2 vectors, remainders not added if inner block is 1 for split 10 case
- [#575](https://github.com/helmholtz-analytics/heat/pull/558) Bugfix: Binary operations use proper type casting
- [#575](https://github.com/helmholtz-analytics/heat/pull/558) Bugfix: `where` and `cov` convert ints to floats when given as parameters
Expand Down
14 changes: 2 additions & 12 deletions heat/cluster/tests/test_kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,10 @@

import heat as ht

if os.environ.get("DEVICE") == "gpu" and ht.torch.cuda.is_available():
ht.use_device("gpu")
ht.torch.cuda.set_device(ht.torch.device(ht.get_device().torch_device))
else:
ht.use_device("cpu")
device = ht.get_device().torch_device
ht_device = None
if os.environ.get("DEVICE") == "lgpu" and ht.torch.cuda.is_available():
device = ht.gpu.torch_device
ht_device = ht.gpu
ht.torch.cuda.set_device(device)
from ...core.tests.test_suites.basic_test import TestCase


class TestKMeans(unittest.TestCase):
class TestKMeans(TestCase):
def test_clusterer(self):
kmeans = ht.cluster.KMeans()
self.assertTrue(ht.is_estimator(kmeans))
Expand Down
14 changes: 2 additions & 12 deletions heat/cluster/tests/test_spectral.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,10 @@

import heat as ht

if os.environ.get("DEVICE") == "gpu" and ht.torch.cuda.is_available():
ht.use_device("gpu")
ht.torch.cuda.set_device(ht.torch.device(ht.get_device().torch_device))
else:
ht.use_device("cpu")
device = ht.get_device().torch_device
ht_device = None
if os.environ.get("DEVICE") == "lgpu" and ht.torch.cuda.is_available():
device = ht.gpu.torch_device
ht_device = ht.gpu
ht.torch.cuda.set_device(device)
from ...core.tests.test_suites.basic_test import TestCase


class TestSpectral(unittest.TestCase):
class TestSpectral(TestCase):
def test_clusterer(self):
spectral = ht.cluster.Spectral()
self.assertTrue(ht.is_estimator(spectral))
Expand Down
460 changes: 225 additions & 235 deletions heat/core/linalg/tests/test_basics.py

Large diffs are not rendered by default.

112 changes: 32 additions & 80 deletions heat/core/linalg/tests/test_qr.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,17 +5,7 @@
import unittest
import warnings

if os.environ.get("DEVICE") == "gpu" and torch.cuda.is_available():
ht.use_device("gpu")
torch.cuda.set_device(torch.device(ht.get_device().torch_device))
else:
ht.use_device("cpu")
device = ht.get_device().torch_device
ht_device = None
if os.environ.get("DEVICE") == "lgpu" and torch.cuda.is_available():
device = ht.gpu.torch_device
ht_device = ht.gpu
torch.cuda.set_device(device)
from ...tests.test_suites.basic_test import TestCase

if os.environ.get("EXTENDED_TESTS"):
extended_tests = True
Expand All @@ -24,122 +14,84 @@
extended_tests = False


class TestQR(unittest.TestCase):
class TestQR(TestCase):
@unittest.skipIf(not extended_tests, "extended tests")
def test_qr_sp0_ext(self):
st_whole = torch.randn(70, 70, device=device)
st_whole = torch.randn(70, 70, device=self.device.torch_device)
sp = 0
for m in range(50, st_whole.shape[0] + 1, 1):
for n in range(50, st_whole.shape[1] + 1, 1):
for t in range(1, 3):
st = st_whole[:m, :n].clone()
a_comp = ht.array(st, split=0, device=ht_device)
a = ht.array(st, split=sp, device=ht_device)
a_comp = ht.array(st, split=0)
a = ht.array(st, split=sp)
qr = a.qr(tiles_per_proc=t)
self.assertTrue(ht.allclose(a_comp, qr.Q @ qr.R, rtol=1e-5, atol=1e-5))
self.assertTrue(
ht.allclose(
qr.Q.T @ qr.Q, ht.eye(m, device=ht_device), rtol=1e-5, atol=1e-5
)
)
self.assertTrue(
ht.allclose(
ht.eye(m, device=ht_device), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5
)
)
self.assertTrue(ht.allclose(qr.Q.T @ qr.Q, ht.eye(m), rtol=1e-5, atol=1e-5))
self.assertTrue(ht.allclose(ht.eye(m), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5))

@unittest.skipIf(not extended_tests, "extended tests")
def test_qr_sp1_ext(self):
st_whole = torch.randn(70, 70, device=device)
st_whole = torch.randn(70, 70, device=self.device.torch_device)
sp = 1
for m in range(50, st_whole.shape[0] + 1, 1):
for n in range(50, st_whole.shape[1] + 1, 1):
for t in range(1, 3):
st = st_whole[:m, :n].clone()
a_comp = ht.array(st, split=0, device=ht_device)
a = ht.array(st, split=sp, device=ht_device)
a_comp = ht.array(st, split=0)
a = ht.array(st, split=sp)
qr = a.qr(tiles_per_proc=t)
self.assertTrue(ht.allclose(a_comp, qr.Q @ qr.R, rtol=1e-5, atol=1e-5))
self.assertTrue(
ht.allclose(
qr.Q.T @ qr.Q, ht.eye(m, device=ht_device), rtol=1e-5, atol=1e-5
)
)
self.assertTrue(
ht.allclose(
ht.eye(m, device=ht_device), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5
)
)
self.assertTrue(ht.allclose(qr.Q.T @ qr.Q, ht.eye(m), rtol=1e-5, atol=1e-5))
self.assertTrue(ht.allclose(ht.eye(m), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5))

def test_qr(self):
m, n = 20, 40
st = torch.randn(m, n, device=device, dtype=torch.float)
a_comp = ht.array(st, split=0, device=ht_device)
st = torch.randn(m, n, device=self.device.torch_device, dtype=torch.float)
a_comp = ht.array(st, split=0)
for t in range(1, 3):
for sp in range(2):
a = ht.array(st, split=sp, device=ht_device, dtype=torch.float)
a = ht.array(st, split=sp, dtype=torch.float)
qr = a.qr(tiles_per_proc=t)
self.assertTrue(ht.allclose((a_comp - (qr.Q @ qr.R)), 0, rtol=1e-5, atol=1e-5))
self.assertTrue(
ht.allclose(qr.Q.T @ qr.Q, ht.eye(m, device=ht_device), rtol=1e-5, atol=1e-5)
)
self.assertTrue(
ht.allclose(ht.eye(m, device=ht_device), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5)
)
self.assertTrue(ht.allclose(qr.Q.T @ qr.Q, ht.eye(m), rtol=1e-5, atol=1e-5))
self.assertTrue(ht.allclose(ht.eye(m), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5))
m, n = 40, 40
st1 = torch.randn(m, n, device=device)
a_comp1 = ht.array(st1, split=0, device=ht_device)
st1 = torch.randn(m, n, device=self.device.torch_device)
a_comp1 = ht.array(st1, split=0)
for t in range(1, 3):
for sp in range(2):
a1 = ht.array(st1, split=sp, device=ht_device)
a1 = ht.array(st1, split=sp)
qr1 = a1.qr(tiles_per_proc=t)
self.assertTrue(ht.allclose((a_comp1 - (qr1.Q @ qr1.R)), 0, rtol=1e-5, atol=1e-5))
self.assertTrue(
ht.allclose(qr1.Q.T @ qr1.Q, ht.eye(m, device=ht_device), rtol=1e-5, atol=1e-5)
)
self.assertTrue(
ht.allclose(ht.eye(m, device=ht_device), qr1.Q @ qr1.Q.T, rtol=1e-5, atol=1e-5)
)
self.assertTrue(ht.allclose(qr1.Q.T @ qr1.Q, ht.eye(m), rtol=1e-5, atol=1e-5))
self.assertTrue(ht.allclose(ht.eye(m), qr1.Q @ qr1.Q.T, rtol=1e-5, atol=1e-5))
m, n = 40, 20
st2 = torch.randn(m, n, dtype=torch.double, device=device)
a_comp2 = ht.array(st2, split=0, dtype=ht.double, device=ht_device)
st2 = torch.randn(m, n, dtype=torch.double, device=self.device.torch_device)
a_comp2 = ht.array(st2, split=0, dtype=ht.double)
for t in range(1, 3):
for sp in range(2):
a2 = ht.array(st2, split=sp, device=ht_device)
a2 = ht.array(st2, split=sp)
qr2 = a2.qr(tiles_per_proc=t)
self.assertTrue(ht.allclose(a_comp2, qr2.Q @ qr2.R, rtol=1e-5, atol=1e-5))
self.assertTrue(
ht.allclose(
qr2.Q.T @ qr2.Q,
ht.eye(m, dtype=ht.double, device=ht_device),
rtol=1e-5,
atol=1e-5,
)
ht.allclose(qr2.Q.T @ qr2.Q, ht.eye(m, dtype=ht.double), rtol=1e-5, atol=1e-5)
)
self.assertTrue(
ht.allclose(
ht.eye(m, dtype=ht.double, device=ht_device),
qr2.Q @ qr2.Q.T,
rtol=1e-5,
atol=1e-5,
)
ht.allclose(ht.eye(m, dtype=ht.double), qr2.Q @ qr2.Q.T, rtol=1e-5, atol=1e-5)
)
# test if calc R alone works
qr = ht.qr(a2, calc_q=False, overwrite_a=True)
self.assertTrue(qr.Q is None)

m, n = 40, 20
st = torch.randn(m, n, device=device)
a_comp = ht.array(st, split=None, device=ht_device)
a = ht.array(st, split=None, device=ht_device)
st = torch.randn(m, n, device=self.device.torch_device)
a_comp = ht.array(st, split=None)
a = ht.array(st, split=None)
qr = a.qr()
self.assertTrue(ht.allclose(a_comp, qr.Q @ qr.R, rtol=1e-5, atol=1e-5))
self.assertTrue(
ht.allclose(qr.Q.T @ qr.Q, ht.eye(m, device=ht_device), rtol=1e-5, atol=1e-5)
)
self.assertTrue(
ht.allclose(ht.eye(m, device=ht_device), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5)
)
self.assertTrue(ht.allclose(qr.Q.T @ qr.Q, ht.eye(m), rtol=1e-5, atol=1e-5))
self.assertTrue(ht.allclose(ht.eye(m), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5))

# raises
with self.assertRaises(TypeError):
Expand Down
14 changes: 2 additions & 12 deletions heat/core/linalg/tests/test_solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,20 +4,10 @@
import heat as ht
import numpy as np

if os.environ.get("DEVICE") == "gpu" and torch.cuda.is_available():
ht.use_device("gpu")
torch.cuda.set_device(torch.device(ht.get_device().torch_device))
else:
ht.use_device("cpu")
device = ht.get_device().torch_device
ht_device = None
if os.environ.get("DEVICE") == "lgpu" and torch.cuda.is_available():
device = ht.gpu.torch_device
ht_device = ht.gpu
torch.cuda.set_device(device)
from ...tests.test_suites.basic_test import TestCase


class TestSolver(unittest.TestCase):
class TestSolver(TestCase):
def test_cg(self):
size = ht.communication.MPI_WORLD.size * 3
b = ht.arange(1, size + 1, dtype=ht.float32, split=0)
Expand Down
2 changes: 1 addition & 1 deletion heat/core/operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def __binary_op(operation, t1, t2):
output_device = None
output_comm = MPI_WORLD
elif isinstance(t2, dndarray.DNDarray):
t1.gpu() if t2.device.device_type == "gpu" else t1.cpu()
t1 = t1.gpu() if t2.device.device_type == "gpu" else t1.cpu()

output_shape = t2.shape
output_split = t2.split
Expand Down
Loading