Skip to content

hhyqhh/KAN-EA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A First Look at Kolmogorov-Arnold Networks in Surrogate-assisted Evolutionary Algorithms

This project uses Kolmogorov-Arnold Networks (KANs) within Surrogate-assisted Evolutionary Algorithms (SAEAs) to efficiently solve black-box optimization problems by reducing the dependency on function evaluations. The code supports the use of KANs for regression and classification, improving optimization efficiency through model assisted selection, thus curtailing function calls. The experiments prove the model's effective integration, showcasing enhanced performance in optimization tasks.


Installation

cd KAN-EA
conda create -n KANEA python=3.10
conda activate KANEA
pip install -r requirements.txt
python setup.py develop

python run_kan_sps.py

KANs pre-selection for EA

run KAN-SPS on Ellipsoid function

from pymoo.optimize import minimize

from problem.LZG import LZG01
from model.KAN_surrogate import KAN_Regressor,KAN_Classifier
from alg.pre_selection import KAN_SPS

problem = LZG01(n_var=5)

model = KAN_Regressor()   # USE KAN_Regressor or KAN_Classifier
# model = KAN_Classifier()  
    
algorithm = KAN_SPS(problem=problem, 
                    pop_size=50, 
                    n_offsprings=50, 
                    reproduction_type="CoDE", 
                    trial_vectors_num=3,
                    model=model
                    )

res = minimize(problem,
                algorithm,
                ('n_evals', 2000),
                verbose=True)

KANs assisted EA

run KAN-SAS on Ellipsoid function

from problem.LZG import LZG01
from pymoo.optimize import minimize

from alg.ueda import KAN_SAS


if __name__=='__main__':

    problem = LZG01(n_var=5)

    algorithm = KAN_SAS(pop_size=50)


    res = minimize(problem,
                   algorithm,
                   ('n_evals', 300),
                   verbose=True)

Limitations:

The current training process of the KANs model is quite time-consuming and has poor compatibility on CUDA. For efficiency, you can refer to some efficient implementations in awesome-kan project.


Cite this work:

@misc{hao2024look,
      title={A First Look at Kolmogorov-Arnold Networks in Surrogate-assisted Evolutionary Algorithms}, 
      author={Hao Hao and Xiaoqun Zhang and Bingdong Li and Aimin Zhou},
      year={2024},
      eprint={2405.16494},
      archivePrefix={arXiv},
      primaryClass={cs.NE}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages