Skip to content

This repo contains our PyTorch implementation for the paper Selecting Optimal Context Sentences for Event-Event Relation Extraction.

License

Notifications You must be signed in to change notification settings

hieumdt/SCS-EERE

Repository files navigation

Selecting Optimal Context Sentences for Event-Event Relation Extraction

==========

This repo contains our PyTorch implementation for the paper Selecting Optimal Context Sentences for Event-Event Relation Extraction.

SCS-EERE

  1. Create and activate a new environment:
docker build -t hieumdt/ie_env -f information-extraction-env.dockerfile .
  1. Prepare data
    Download the desired corpus (HiEve, MATRES, TDD) and put it in folder .\datasets
    Download numberbatch w2v and move it to folder .\datasets
wget https://conceptnet.s3.amazonaws.com/downloads/2019/numberbatch/numberbatch-en-19.08.txt.gz
gunzip numberbatch-en-19.08.txt.gz
mv numberbatch-en-19.08.txt ./datasets
  1. Train model:
python main.py --seed <your_seed> --dataset <datataset> --roberta_type <roberta_type> --best_path <path_to_save_model> --log_file <log> --bs <batch_size>
  • dataset chooses from HiEve, MATRES, TDD_man, TDD_auto
  • roberta_type chooses from roberta_base, roberta_large
  1. Example commands: Training HiEve
python main.py --seed 1741 --dataset HiEve --roberta_type roberta_large --best_path /rst_HiEve/ --log_file HiEve_result.txt --bs 16

Note
Need to ensure the minimal number of sentences of the doc is always larger than the number of selected sentence.

License

All work contained in this package is licensed under the Apache License, Version 2.0.

Reference

Bibtex:

@article{trong2022selecting,
  title={Selecting Optimal Context Sentences for Event-Event Relation Extraction},
  author={Trong, Hieu Man Duc and Trung, Nghia Ngo and Van Ngo, Linh and Nguyen, Thien Huu},
  year={2022}
}

Email: hieuman2708@gmail.com; v.hieumdt@vinai.io

About

This repo contains our PyTorch implementation for the paper Selecting Optimal Context Sentences for Event-Event Relation Extraction.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published