forked from luizgiacomossi/Search_Drone_Swarms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulation.py
182 lines (140 loc) · 6.57 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import time
import pygame
from constants import *
from vehicle import Vehicle, VehiclePF
from scan import ScanInterface
from state_machine import FiniteStateMachine, SeekState, StayAtState, OvalState, Eight2State, ScanState
from random import uniform
from obstacle import Obstacles
from utils import Npc_target
vec2 = pygame.math.Vector2
##=========================
class RateSimulation(object):
def __init__(self, in_repetitions, in_num_swarm, in_algorithms):
self.current_repetition = 0
# Inputs of Rate
self.in_repetitions = in_repetitions * len(in_num_swarm) * len(in_algorithms)
self.in_num_swarm = []
for n in in_num_swarm:
self.in_num_swarm = self.in_num_swarm + [n] * int(self.in_repetitions/len(in_num_swarm))
self.in_algorithms = []
for a in in_algorithms:
self.in_algorithms = self.in_algorithms + [a] * int(self.in_repetitions/len(in_algorithms))
# Outputs of Rate
self.out_time = []
self.print_simulation()
def set_out(self, out_time):
self.out_time.append(out_time)
def next_simulation(self):
if self.in_repetitions - 1 == self.current_repetition:
return False
else:
self.current_repetition = self.current_repetition + 1
self.print_simulation()
return True
def print_simulation(self):
print(f'{self.current_repetition+1} - num_swarm: {self.in_num_swarm[self.current_repetition]}, Algorithm: {self.in_algorithms[self.current_repetition].to_string()}')
class ScreenSimulation(object):
def __init__(self):
pygame.init()
self.font20 = pygame.font.SysFont(None, 20)
self.font24 = pygame.font.SysFont(None, 24)
self.size = SCREEN_WIDTH, SCREEN_HEIGHT
self.clock = pygame.time.Clock()
self.screen = pygame.display.set_mode(self.size)
class Simulation(object):
def __init__(self, screenSimulation,rate:RateSimulation, num_obstacles = NUM_OBSTACLES):
self.target_simulation = None
self.screenSimulation = screenSimulation
self.start_watch = 0
self.stop_watch = 0
self.rate = rate
self.time_executing = 0
# variables for obstacles
self.obstacles = Obstacles(num_obstacles, (SCREEN_WIDTH,SCREEN_HEIGHT))
self.list_obst = []
self.generate_obstacles()
# state machines for each vehicle
self.behaviors =[]
# Current simulations
self.swarm = []
# npc target
self.npc = Npc_target()
self.all_sprites = pygame.sprite.Group()
self.all_sprites.add(self.npc)
self.create_swarm_uav(rate.in_num_swarm[0])
def generate_obstacles(self):
# Generates obstacles
self.obstacles.generate_obstacles()
self.list_obst = self.obstacles.get_coordenates()
def create_swarm_uav(self, num_swarm):
# Create N simultaneous Drones
for d in range(0, num_swarm):
self.behaviors.append( FiniteStateMachine( SeekState() ) ) # Inicial state
#using Old vehicle: steering behavior
drone = Vehicle(SCREEN_WIDTH*d/num_swarm, 10, self.behaviors[-1], self.screenSimulation.screen)
#using potential fields
#drone = VehiclePF(SCREEN_WIDTH*d/num_swarm, 10, self.behaviors[-1], self.screenSimulation.screen)
self.swarm.append(drone)
def add_new_uav(self):
self.behaviors.append( FiniteStateMachine( SeekState() ) )
#using Old vehicle: steering behavior
drone = Vehicle(SCREEN_WIDTH/2, SCREEN_HEIGHT/2, self.behaviors[-1], self.screenSimulation.screen)
#using potential fields
#drone = VehiclePF(SCREEN_WIDTH*d/num_swarm, 10, self.behaviors[-1], self.screenSimulation.screen)
drone.set_target(vec2(pygame.mouse.get_pos()[0],pygame.mouse.get_pos()[1]))
self.append_uav(drone)
def append_uav(self, drone):
self.swarm.append(drone)
def set_target(self, target):
self.target_simulation = target
for _ in self.swarm:
_.set_target(target)
def run_simulation(self):
if self.target_simulation: # draw target - npc
self.all_sprites.draw(self.screenSimulation.screen)
self.all_sprites.update(self.target_simulation,0)
pygame.draw.circle(self.screenSimulation.screen, (100, 100, 100), self.target_simulation, RADIUS_TARGET, 2)
if self.start_watch == 0:
self.start_watch = time.time()
self.rate.in_algorithms[self.rate.current_repetition].scan(self, self.list_obst)
for _ in self.list_obst: # draws the sprites of tree
self.obstacles.all_sprites.draw(self.screenSimulation.screen)
self.obstacles.all_sprites.update(_,0)
pygame.draw.circle(self.screenSimulation.screen,(200, 200, 200), _, radius=RADIUS_OBSTACLES, width=1)
pygame.draw.circle(self.screenSimulation.screen,(200, 200, 200), _, radius=RADIUS_OBSTACLES*1.6 + AVOID_DISTANCE, width=1)
self.time_executing += SAMPLE_TIME # count time of execution based on the sampling
print(self.time_executing)
if self.completed_simualtion() >= 0.8 and self.stop_watch == 0 or self.time_executing > TIME_MAX_SIMULATION:
self.stop_watch = time.time()
if self.rate and self.rate.next_simulation():
self.rest_simulation()
else:
return False
return True
def completed_simualtion(self):
count_completed = 0
if self.target_simulation:
for _ in self.swarm:
if _.reached_goal(self.target_simulation):
count_completed = count_completed + 1
return count_completed/self.rate.in_num_swarm[self.rate.current_repetition]
def rest_simulation(self):
# new obstacles
self.generate_obstacles()
time = self.stop_watch - self.start_watch
if self.time_executing > TIME_MAX_SIMULATION:
time = "Goal not reached"
self.rate.set_out(time)
for _ in self.swarm:
_.set_target(None)
del _
self.swarm = []
self.start_watch = 0
self.stop_watch = 0
self.target_simulation = None
self.create_swarm_uav(self.rate.in_num_swarm[self.rate.current_repetition])
self.time_executing = 0 # Reset timer
# set new random target for iteration
target = vec2(uniform(100,SCREEN_WIDTH), uniform(100,SCREEN_HEIGHT))
self.set_target(target)