Skip to content

Feature Select provides an elegant solution to the problem of handpicking the suite of the most suitable features from a tabular dataset, using mathematical optimization.

License

Notifications You must be signed in to change notification settings

himanshu-dutta/featureselect

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Feature Select PyPackage

Feature Select is a simple yet effective solution to select features from a numeric dataset, which yields the best results, given a Machine Learning algorithm.

Features

  • Multiple optimization algorithms to work with.
  • Works with most class based Machine Learning models over a range of libraries.
  • Compatible with all platforms.

Quickstart

Install the latest Feature Select with

pip install featureselect

Usage

from featureselect import DEOptimizer, SAOptimizer, GAOptimizer, PSOptimizer
from sklearn.tree import DecisionTreeClassifier
import pandas as pd

# loading a dataset
dataset = pd.read_csv("dataset.csv", header=None)
dataset[34] = dataset[34].apply(lambda x: 1 if x == "g" else 0)
dataset = dataset.dropna()
X, y = dataset.iloc[:, :-1].to_numpy(), dataset.iloc[:, -1].to_numpy()

# best_accuracy, index_of_best_features = GAOptimizer((X, y), DecisionTreeClassifier, epochs = 10, threshold=0.6, verbose=1, max_depth=3)
# best_accuracy, index_of_best_features = SAOptimizer((X, y), DecisionTreeClassifier, epochs = 10, threshold=0.6, verbose=True, max_depth=3)
# best_accuracy, index_of_best_features = PSOptimizer((X, y), DecisionTreeClassifier, epochs = 10, verbose=1, max_depth=3)


best_accuracy, index_of_best_features = DEOptimizer((X, y), DecisionTreeClassifier, epochs = 10, threshold=0.6, verbose=1, max_depth=3)

#############
#   Output
#############
Initial Accuracy: 0.887.
----------------------------------
*  Epoch:  1 | Accuracy: 0.958.
----------------------------------
*  Epoch:  2 | Accuracy: 0.958.
----------------------------------
*  Epoch:  3 | Accuracy: 0.958.
----------------------------------
*  Epoch:  4 | Accuracy: 0.958.
----------------------------------
*  Epoch:  5 | Accuracy: 0.972.
----------------------------------
*  Epoch:  6 | Accuracy: 0.972.
----------------------------------
*  Epoch:  7 | Accuracy: 0.972.
----------------------------------
*  Epoch:  8 | Accuracy: 0.972.
----------------------------------
*  Epoch:  9 | Accuracy: 0.986.
----------------------------------
*  Epoch: 10 | Accuracy: 0.986.
----------------------------------
(0.9859154929577465, array([ 2,  4,  5,  6,  9, 11, 12, 13, 14, 17, 19, 20, 21, 24, 26, 29, 32]))

Note

The project is still in developement phase and will be expanded and made better over time. Any contribution to it is welcomed. Stable release would be made available soon.

About

Feature Select provides an elegant solution to the problem of handpicking the suite of the most suitable features from a tabular dataset, using mathematical optimization.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages