forked from influxdata/influxdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neldermead.go
239 lines (204 loc) · 4.82 KB
/
neldermead.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// Package neldermead is an implementation of the Nelder-Mead optimization method.
// Based on work by Michael F. Hutt: http://www.mikehutt.com/neldermead.html
package neldermead
import "math"
const (
defaultMaxIterations = 1000
// reflection coefficient
defaultAlpha = 1.0
// contraction coefficient
defaultBeta = 0.5
// expansion coefficient
defaultGamma = 2.0
)
// Optimizer represents the parameters to the Nelder-Mead simplex method.
type Optimizer struct {
// Maximum number of iterations.
MaxIterations int
// Reflection coefficient.
Alpha,
// Contraction coefficient.
Beta,
// Expansion coefficient.
Gamma float64
}
// New returns a new instance of Optimizer with all values set to the defaults.
func New() *Optimizer {
return &Optimizer{
MaxIterations: defaultMaxIterations,
Alpha: defaultAlpha,
Beta: defaultBeta,
Gamma: defaultGamma,
}
}
// Optimize applies the Nelder-Mead simplex method with the Optimizer's settings.
func (o *Optimizer) Optimize(
objfunc func([]float64) float64,
start []float64,
epsilon,
scale float64,
) (float64, []float64) {
n := len(start)
//holds vertices of simplex
v := make([][]float64, n+1)
for i := range v {
v[i] = make([]float64, n)
}
//value of function at each vertex
f := make([]float64, n+1)
//reflection - coordinates
vr := make([]float64, n)
//expansion - coordinates
ve := make([]float64, n)
//contraction - coordinates
vc := make([]float64, n)
//centroid - coordinates
vm := make([]float64, n)
// create the initial simplex
// assume one of the vertices is 0,0
pn := scale * (math.Sqrt(float64(n+1)) - 1 + float64(n)) / (float64(n) * math.Sqrt(2))
qn := scale * (math.Sqrt(float64(n+1)) - 1) / (float64(n) * math.Sqrt(2))
for i := 0; i < n; i++ {
v[0][i] = start[i]
}
for i := 1; i <= n; i++ {
for j := 0; j < n; j++ {
if i-1 == j {
v[i][j] = pn + start[j]
} else {
v[i][j] = qn + start[j]
}
}
}
// find the initial function values
for j := 0; j <= n; j++ {
f[j] = objfunc(v[j])
}
// begin the main loop of the minimization
for itr := 1; itr <= o.MaxIterations; itr++ {
// find the indexes of the largest and smallest values
vg := 0
vs := 0
for i := 0; i <= n; i++ {
if f[i] > f[vg] {
vg = i
}
if f[i] < f[vs] {
vs = i
}
}
// find the index of the second largest value
vh := vs
for i := 0; i <= n; i++ {
if f[i] > f[vh] && f[i] < f[vg] {
vh = i
}
}
// calculate the centroid
for i := 0; i <= n-1; i++ {
cent := 0.0
for m := 0; m <= n; m++ {
if m != vg {
cent += v[m][i]
}
}
vm[i] = cent / float64(n)
}
// reflect vg to new vertex vr
for i := 0; i <= n-1; i++ {
vr[i] = vm[i] + o.Alpha*(vm[i]-v[vg][i])
}
// value of function at reflection point
fr := objfunc(vr)
if fr < f[vh] && fr >= f[vs] {
for i := 0; i <= n-1; i++ {
v[vg][i] = vr[i]
}
f[vg] = fr
}
// investigate a step further in this direction
if fr < f[vs] {
for i := 0; i <= n-1; i++ {
ve[i] = vm[i] + o.Gamma*(vr[i]-vm[i])
}
// value of function at expansion point
fe := objfunc(ve)
// by making fe < fr as opposed to fe < f[vs],
// Rosenbrocks function takes 63 iterations as opposed
// to 64 when using double variables.
if fe < fr {
for i := 0; i <= n-1; i++ {
v[vg][i] = ve[i]
}
f[vg] = fe
} else {
for i := 0; i <= n-1; i++ {
v[vg][i] = vr[i]
}
f[vg] = fr
}
}
// check to see if a contraction is necessary
if fr >= f[vh] {
if fr < f[vg] && fr >= f[vh] {
// perform outside contraction
for i := 0; i <= n-1; i++ {
vc[i] = vm[i] + o.Beta*(vr[i]-vm[i])
}
} else {
// perform inside contraction
for i := 0; i <= n-1; i++ {
vc[i] = vm[i] - o.Beta*(vm[i]-v[vg][i])
}
}
// value of function at contraction point
fc := objfunc(vc)
if fc < f[vg] {
for i := 0; i <= n-1; i++ {
v[vg][i] = vc[i]
}
f[vg] = fc
} else {
// at this point the contraction is not successful,
// we must halve the distance from vs to all the
// vertices of the simplex and then continue.
for row := 0; row <= n; row++ {
if row != vs {
for i := 0; i <= n-1; i++ {
v[row][i] = v[vs][i] + (v[row][i]-v[vs][i])/2.0
}
}
}
f[vg] = objfunc(v[vg])
f[vh] = objfunc(v[vh])
}
}
// test for convergence
fsum := 0.0
for i := 0; i <= n; i++ {
fsum += f[i]
}
favg := fsum / float64(n+1)
s := 0.0
for i := 0; i <= n; i++ {
s += math.Pow((f[i]-favg), 2.0) / float64(n)
}
s = math.Sqrt(s)
if s < epsilon {
break
}
}
// find the index of the smallest value
vs := 0
for i := 0; i <= n; i++ {
if f[i] < f[vs] {
vs = i
}
}
parameters := make([]float64, n)
for i := 0; i < n; i++ {
parameters[i] = v[vs][i]
}
min := objfunc(v[vs])
return min, parameters
}