This repository is the official implementation of the UNR-Explainer
We provide an environment.yml file to create a Conda environment:
conda env create -f environment.yml
conda activate unr
To explain the trained model, run the following command:
python explain_gnns.py --dataset syn1 --model graphsage --task node
python explain_gnns.py --dataset syn3 --model graphsage --task node
python explain_gnns.py --dataset syn4 --model graphsage --task node
python explain_gnns.py --dataset Cora --model graphsage --task link
python explain_gnns.py --dataset CiteSeer --model graphsage --task link
python explain_gnns.py --dataset PubMed --model dgi --task node
python evaluate_expl_syn.py --dataset syn1 --model graphsage --task node
python evaluate_expl_syn.py --dataset syn3 --model graphsage --task node
python evaluate_expl_syn.py --dataset syn4 --model graphsage --task node
python evaluate_expl.py --dataset Cora --model graphsage --task link
python evaluate_expl.py --dataset CiteSeer --model graphsage --task link
python evaluate_expl.py --dataset PubMed --model dgi --task node
To train the original GNN models for the datasets in the paper, run the following command:
python train_gnns.py --dataset syn1 --model graphsage --task node
python train_gnns.py --dataset syn3 --model graphsage --task node
python train_gnns.py --dataset syn4 --model graphsage --task node
python train_gnns.py --dataset Cora --model graphsage --task link
python train_gnns.py --dataset CiteSeer --model graphsage --task link
python train_gnns.py --dataset PubMed --model dgi --task node