Skip to content

Dockerbeat - the elastic Beat for docker daemon monitoring

License

Notifications You must be signed in to change notification settings

hmalphettes/dockerbeat

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status codecov.io

dockerbeat

Dockerbeat is the Beat used for docker daemon monitoring. It is a lightweight agent that installed on your servers, reads periodically docker container statistics and indexes them in Elasticsearch.

This is quite early stage and not yet released.

Exported document types

There are five types of documents exported:

  • type: container for container attributes
  • type: cpu for per process container statistics. One document per container is generated.
  • type: net for container network statistics. One document per network container is generated.
  • type: memory for container memory statistics. One document per container is generated.
  • type: blkio for container io access statistics. One document per container is generated.

Container type

{
  "_index": "dockerbeat-2016.01.12",
  "_type": "container",
  "_id": "AVI1H82SG7YyM5rPIFuI",
  "_score": null,
  "_source": {
    "@timestamp": "2016-01-12T09:17:02.527Z",
    "beat": {
      "hostname": "machine",
      "name": "machine"
    },
    "container": {
      "command": "/docker-entrypoint.sh kibana",
      "created": "2015-08-10T15:33:10+02:00",
      "id": "7e91fbb0c7885f55ef8bf9402bbe4b366f88224c8baf31d36265061aa5ba2735",
      "image": "5f5f2d8e229dcd39efaca74ae49ee15c8344dd94dc4f0c3333f37a56942d55a5",
      "labels": {},
      "names": [
        "/kibana"
      ],
      "ports": [
        {
          "ip": "0.0.0.0",
          "privatePort": 5601,
          "publicPort": 5601,
          "type": "tcp"
        }
      ],
      "sizeRootFs": 0,
      "sizeRw": 0,
      "status": "Up 15 seconds"
    },
    "containerID": "7e91fbb0c7885f55ef8bf9402bbe4b366f88224c8baf31d36265061aa5ba2735",
    "containerName": "kibana",
    "count": 1,
    "type": "container"
  },
  "fields": {
    "@timestamp": [
      1452590222527
    ],
    "container.created": [
      1439213590000
    ]
  },
  "sort": [
    1452590222527
  ]
}

cpu type

{
  "_index": "dockerbeat-2016.01.12",
  "_type": "cpu",
  "_id": "AVI1H82SG7YyM5rPIFuJ",
  "_score": null,
  "_source": {
    "@timestamp": "2016-01-12T09:17:02.527Z",
    "beat": {
      "hostname": "machine",
      "name": "machine"
    },
    "containerID": "7e91fbb0c7885f55ef8bf9402bbe4b366f88224c8baf31d36265061aa5ba2735",
    "containerName": "kibana",
    "count": 1,
    "cpu": {
      "percpuUsage": {
        "cpu0": 0,
        "cpu1": 0,
        "cpu2": 0,
        "cpu3": 0
      },
      "totalUsage": 0,
      "usageInKernelmode": 0,
      "usageInUsermode": 0
    },
    "type": "cpu"
  },
  "fields": {
    "@timestamp": [
      1452590222527
    ]
  },
  "sort": [
    1452590222527
  ]
}

net type

{
  "_index": "dockerbeat-2016.01.12",
  "_type": "net",
  "_id": "AVI1H82SG7YyM5rPIFuM",
  "_score": null,
  "_source": {
    "@timestamp": "2016-01-12T09:17:02.527Z",
    "beat": {
      "hostname": "machine",
      "name": "machine"
    },
    "containerID": "7e91fbb0c7885f55ef8bf9402bbe4b366f88224c8baf31d36265061aa5ba2735",
    "containerName": "kibana",
    "count": 1,
    "net": {
      "name": "eth0",
      "rxBytes_ps": 5218.326579188697,
      "rxDropped_ps": 0,
      "rxErrors_ps": 0,
      "rxPackets_ps": 19.199729863640766,
      "txBytes_ps": 5097.328281610544,
      "txDropped_ps": 0,
      "txErrors_ps": 0,
      "txPackets_ps": 19.199729863640766
    },
    "type": "net"
  },
  "fields": {
    "@timestamp": [
      1452590222527
    ]
  },
  "sort": [
    1452590222527
  ]
}

memory type

{
  "_index": "dockerbeat-2016.01.12",
  "_type": "memory",
  "_id": "AVI1H82SG7YyM5rPIFuK",
  "_score": null,
  "_source": {
    "@timestamp": "2016-01-12T09:17:02.527Z",
    "beat": {
      "hostname": "machine",
      "name": "machine"
    },
    "containerID": "7e91fbb0c7885f55ef8bf9402bbe4b366f88224c8baf31d36265061aa5ba2735",
    "containerName": "kibana",
    "count": 1,
    "memory": {
      "failcnt": 0,
      "limit": 7950876672,
      "maxUsage": 74997760,
      "usage": 74817536,
      "usage_p": 0.009409973149687913
    },
    "type": "memory"
  },
  "fields": {
    "@timestamp": [
      1452590222527
    ]
  },
  "sort": [
    1452590222527
  ]
}

blkio type

{
  "_index": "dockerbeat-2016.01.12",
  "_type": "blkio",
  "_id": "AVI1H82SG7YyM5rPIFuL",
  "_score": null,
  "_source": {
    "@timestamp": "2016-01-12T09:17:02.527Z",
    "beat": {
      "hostname": "machine",
      "name": "machine"
    },
    "blkio": {
      "read": 0.5999915582387739,
      "total": 0.5999915582387739,
      "write": 0
    },
    "containerID": "7e91fbb0c7885f55ef8bf9402bbe4b366f88224c8baf31d36265061aa5ba2735",
    "containerNames": [
      "/kibana"
    ],
    "count": 1,
    "type": "blkio"
  },
  "fields": {
    "@timestamp": [
      1452590222527
    ]
  },
  "sort": [
    1452590222527
  ]
}

Elasticsearch template

To apply dockerbeat template:

curl -XPUT 'http://localhost:9200/_template/dockerbeat' -d@etc/dockerbeat.template.json

Build dockerbeat

To launch a dockerbeat, build and run the executable. Executable can be compiled either with make command (this requires a fully functional golang environment) or in a docker container.

Build with make

Just Simply run the make command at the root project directory. Your golang development environment should be fully functional).

Build in a container

If you don't have (and don't want) to setup a golang environment in your host, you can run a make dockermake to launch compilation into a golang doker container (you just need a fully functionnal docker environment).

Run dockerbeat

Project compilation generate a dockerbeat executable file in the root directory. To launch dockerbeat, run the following command:

./dockerbeat -c etc/dockerbeat.yml

Run in a docker container

The easiest way to launch dockerbeat is to run it in a container. To achieve this, use the ingensi/dockerbeat docker image, available on the docker hub.

Docker run command should:

  • mount the target Docker socket to /var/run/docker.sock
  • link an Elasticsearch node as elasticsearch

Example:

docker run -d -v /var/run/docker.sock:/var/run/docker.sock --link elastic:elasticsearch ingensi/dockerbeat:1.0.0-beta1

To override the default configuration, just link yours to /etc/dockerbeat/dockerbeat.yml:

 docker run -d -v /var/run/docker.sock:/var/run/docker.sock -v /your/custom/conf.yml:/etc/dockerbeat/dockerbeat.yml --link elastic:elasticsearch ingensi/dockerbeat:1.0.0-beta1

About

Dockerbeat - the elastic Beat for docker daemon monitoring

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 90.3%
  • Python 8.0%
  • Makefile 1.7%