-
Notifications
You must be signed in to change notification settings - Fork 67
/
llul.py
289 lines (250 loc) · 10.3 KB
/
llul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import tempfile
from typing import Union, List, Callable
import torch
import torchvision.transforms.functional
from PIL import Image
import gradio as gr
from modules.processing import StableDiffusionProcessing, Processed
from modules import scripts
from scripts.llul_hooker import Hooker, Upscaler, Downscaler
from scripts.llul_xyz import init_xyz
NAME = 'LLuL'
class Script(scripts.Script):
def __init__(self):
super().__init__()
self.last_hooker: Union[Hooker,None] = None
def title(self):
return NAME
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
mode = 'img2img' if is_img2img else 'txt2img'
id = lambda x: f'{NAME.lower()}-{mode}-{x}'
js = lambda s: f'globalThis["{id(s)}"]'
with gr.Group():
with gr.Accordion(NAME, open=False, elem_id=id('accordion')):
enabled = gr.Checkbox(label='Enabled', value=False)
with gr.Row():
weight = gr.Slider(minimum=-1, maximum=2, value=0.15, step=0.01, label='Weight')
multiply = gr.Slider(value=1, minimum=1, maximum=5, step=1, label='Multiplication (2^N)', elem_id=id('m'))
gr.HTML(elem_id=id('container'))
add_area_image = gr.Checkbox(value=True, label='Add the effective area to output images.')
with gr.Row():
use_mask = gr.Checkbox(value=False, label='Enable mask which scales the weight (black = 0.0, white = 1.0)')
mask = gr.File(interactive=True, label='Upload mask image', elem_id=id('mask'))
force_float = gr.Checkbox(label='Force convert half to float on interpolation (for some platforms)', value=False)
understand = gr.Checkbox(label='I know what I am doing.', value=False)
with gr.Column(visible=False) as g:
layers = gr.Textbox(label='Layers', value='OUT')
apply_to = gr.CheckboxGroup(choices=['Resblock', 'Transformer', 'S. Attn.', 'X. Attn.', 'OUT'], value=['OUT'], label='Apply to')
start_steps = gr.Slider(minimum=1, maximum=300, value=5, step=1, label='Start steps')
max_steps = gr.Slider(minimum=0, maximum=300, value=0, step=1, label='Max steps')
with gr.Row():
up = gr.Radio(choices=['Nearest', 'Bilinear', 'Bicubic'], value='Bilinear', label='Upscaling')
up_aa = gr.Checkbox(value=False, label='Enable AA for Upscaling.')
with gr.Row():
down = gr.Radio(choices=['Nearest', 'Bilinear', 'Bicubic', 'Area', 'Pooling Max', 'Pooling Avg'], value='Bilinear', label='Downscaling')
down_aa = gr.Checkbox(value=False, label='Enable AA for Downscaling.')
intp = gr.Radio(choices=['Lerp', 'SLerp'], value='Lerp', label='interpolation method')
understand.change(
lambda b: { g: gr.update(visible=b) },
inputs=[understand],
outputs=[
g # type: ignore
]
)
with gr.Row(visible=False):
sink = gr.HTML(value='') # to suppress error in javascript
x = js2py('x', id, js, sink)
y = js2py('y', id, js, sink)
return [
enabled,
multiply,
weight,
understand,
layers,
apply_to,
start_steps,
max_steps,
up,
up_aa,
down,
down_aa,
intp,
x,
y,
force_float,
use_mask,
mask,
add_area_image,
]
def process(
self,
p: StableDiffusionProcessing,
enabled: bool,
multiply: Union[int,float],
weight: float,
understand: bool,
layers: str,
apply_to: Union[List[str],str],
start_steps: Union[int,float],
max_steps: Union[int,float],
up: str,
up_aa: bool,
down: str,
down_aa: bool,
intp: str,
x: Union[str,None] = None,
y: Union[str,None] = None,
force_float = False,
use_mask: bool = False,
mask: Union[tempfile._TemporaryFileWrapper,None] = None,
add_area_image: bool = True, # for postprocess
):
if self.last_hooker is not None:
self.last_hooker.__exit__(None, None, None)
self.last_hooker = None
if not enabled:
return
if p.width < 128 or p.height < 128:
raise ValueError(f'Image size is too small to LLuL: {p.width}x{p.height}; expected >=128x128.')
multiply = 2 ** int(max(multiply, 0))
weight = float(weight)
if x is None or len(x) == 0:
x = str((p.width - p.width // multiply) // 2)
if y is None or len(y) == 0:
y = str((p.height - p.height // multiply) // 2)
if understand:
lays = (
None if len(layers) == 0 else
[x.strip() for x in layers.split(',')]
)
if isinstance(apply_to, str):
apply_to = [x.strip() for x in apply_to.split(',')]
apply_to = [x.lower() for x in apply_to]
start_steps = max(1, int(start_steps))
max_steps = max(1, [p.steps, int(max_steps)][1 <= max_steps])
up_fn = Upscaler(up, up_aa)
down_fn = Downscaler(down, down_aa)
intp = intp.lower()
else:
lays = ['OUT']
apply_to = ['out']
start_steps = 5
max_steps = int(p.steps)
up_fn = Upscaler('bilinear', aa=False)
down_fn = Downscaler('bilinear', aa=False)
intp = 'lerp'
xf = float(x)
yf = float(y)
mask_image = None
if use_mask and mask is not None:
# Can I read from passed tempfile._TemporaryFileWrapper???
mask_image = Image.open(mask.name).convert('L')
intp = 'lerp'
self.last_hooker = Hooker(
enabled=True,
multiply=int(multiply),
weight=weight,
layers=lays,
apply_to=apply_to,
start_steps=start_steps,
max_steps=max_steps,
up_fn=up_fn,
down_fn=down_fn,
intp=intp,
x=xf/p.width,
y=yf/p.height,
force_float=force_float,
mask_image=mask_image,
)
self.last_hooker.setup(p)
self.last_hooker.__enter__()
p.extra_generation_params.update({
f'{NAME} Enabled': enabled,
f'{NAME} Multiply': multiply,
f'{NAME} Weight': weight,
f'{NAME} Layers': lays,
f'{NAME} Apply to': apply_to,
f'{NAME} Start steps': start_steps,
f'{NAME} Max steps': max_steps,
f'{NAME} Upscaler': up_fn.name,
f'{NAME} Downscaler': down_fn.name,
f'{NAME} Interpolation': intp,
f'{NAME} x': x,
f'{NAME} y': y,
})
def postprocess(
self,
p: StableDiffusionProcessing,
proc: Processed,
enabled: bool,
multiply: Union[int,float],
weight: float,
understand: bool,
layers: str,
apply_to: Union[List[str],str],
start_steps: Union[int,float],
max_steps: Union[int,float],
up: str,
up_aa: bool,
down: str,
down_aa: bool,
intp: str,
x: Union[str,None] = None,
y: Union[str,None] = None,
force_float = False,
use_mask: bool = False,
mask: Union[tempfile._TemporaryFileWrapper,None] = None,
add_area_image: bool = True,
):
if not enabled:
return
multiply = int(2 ** int(max(multiply, 0)))
if x is None or len(x) == 0:
x = str((p.width - p.width // multiply) // 2)
if y is None or len(y) == 0:
y = str((p.height - p.height // multiply) // 2)
xi0 = int(float(x)) # for '133.1999969482422' or etc.
yi0 = int(float(y))
xi1 = xi0 + p.width // multiply
yi1 = yi0 + p.height // multiply
area = torch.zeros((1, p.height, p.width), dtype=torch.float)
area[:, yi0:yi1, xi0:xi1] = 1.0
pil_to_tensor = torchvision.transforms.functional.to_tensor
tensor_to_pil = torchvision.transforms.functional.to_pil_image
if use_mask and mask is not None:
# Can I read from passed tempfile._TemporaryFileWrapper???
mask_image = Image.open(mask.name).convert('L').resize((xi1 - xi0, yi1 - yi0), Image.BILINEAR)
mask_tensor = pil_to_tensor(mask_image)
# :: (1,h,w), each value is between 0 and 1
area[:, yi0:yi1, xi0:xi1] = mask_tensor
# (0.0, 1.0) -> (0.25, 1.0)
area.mul_(0.75).add_(0.25)
for image_index in range(len(proc.images)):
is_grid = image_index < proc.index_of_first_image
if is_grid:
continue
area_tensor = pil_to_tensor(proc.images[image_index])
area_tensor.mul_(area)
area_image = tensor_to_pil(area_tensor, mode='RGB')
i = image_index - proc.index_of_first_image
proc.images.append(area_image)
proc.all_prompts.append(proc.all_prompts[i])
proc.all_negative_prompts.append(proc.all_negative_prompts[i])
proc.all_seeds.append(proc.all_seeds[i])
proc.all_subseeds.append(proc.all_subseeds[i])
proc.infotexts.append(proc.infotexts[image_index])
def js2py(
name: str,
id: Callable[[str], str],
js: Callable[[str], str],
sink: gr.components.IOComponent,
):
v_set = gr.Button(elem_id=id(f'{name}_set'))
v = gr.Textbox(elem_id=id(name))
v_sink = gr.Textbox()
v_set.click(fn=None, _js=js(name), outputs=[v, v_sink])
v_sink.change(fn=None, _js=js(f'{name}_after'), outputs=[sink])
return v
init_xyz(Script)