@@ -546,6 +546,35 @@ DeclareOperation( "EmbeddingOfRelativePseudoComplementSubobject",
546
546
DeclareOperation( " EmbeddingOfRelativePseudoComplementSubobjectWithGivenImplication" ,
547
547
[ IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryObject ] );
548
548
549
+ # ##################################
550
+ # #
551
+ # ! @Section Pushout complements
552
+ # #
553
+ # ##################################
554
+
555
+ # ! @Description
556
+ # ! The arguments are two composable morphisms $l: K \rightarrow L$, $m: L \rightarrow G$.
557
+ # ! The output is <C>true</C> if there exists a morphism $d: K \rightarrow D$ and a morphism $g: D \rightarrow G$
558
+ # ! such that the four morphisms $l,d,m,g$ form a pushout diagram, i.e., such that
559
+ # ! $m$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 1) and
560
+ # ! $g$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 2).
561
+ # ! Otherwise the output is <C>false</C>.
562
+ # ! @Returns a boolean
563
+ # ! @Arguments l, m
564
+ DeclareOperation( " HasPushoutComplement" ,
565
+ [ IsCapCategoryMorphism, IsCapCategoryMorphism ] );
566
+
567
+ # ! @Description
568
+ # ! The arguments are two composable morphisms $l: K \rightarrow L$, $m: L \rightarrow G$.
569
+ # ! The output is a morphism $d: K \rightarrow D$ such that there exists a morphism $g: D \rightarrow G$
570
+ # ! turing the four morphisms $l,d,m,g$ into a pushout diagram, i.e., such that
571
+ # ! $m$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 1) and
572
+ # ! $g$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 2).
573
+ # ! @Returns a morphism
574
+ # ! @Arguments l, m
575
+ DeclareOperation( " PushoutComplement" ,
576
+ [ IsCapCategoryMorphism, IsCapCategoryMorphism ] );
577
+
549
578
# ##################################
550
579
# #
551
580
# ! @Section Lawvere-Tierney topologies
@@ -576,32 +605,3 @@ DeclareAttribute( "LawvereTierneySubobjects",
576
605
# ! @Arguments T
577
606
DeclareAttribute( " LawvereTierneyEmbeddingsOfSubobjectClassifiers" ,
578
607
IsCapCategory );
579
-
580
- # ##################################
581
- # #
582
- # ! @Section Pushout complements
583
- # #
584
- # ##################################
585
-
586
- # ! @Description
587
- # ! The arguments are two composable morphisms $l: K \rightarrow L$, $m: L \rightarrow G$.
588
- # ! The output is <C>true</C> if there exists a morphism $d: K \rightarrow D$ and a morphism $g: D \rightarrow G$
589
- # ! such that the four morphisms $l,d,m,g$ form a pushout diagram, i.e., such that
590
- # ! $m$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 1) and
591
- # ! $g$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 2).
592
- # ! Otherwise the output is <C>false</C>.
593
- # ! @Returns a boolean
594
- # ! @Arguments l, m
595
- DeclareOperation( " HasPushoutComplement" ,
596
- [ IsCapCategoryMorphism, IsCapCategoryMorphism ] );
597
-
598
- # ! @Description
599
- # ! The arguments are two composable morphisms $l: K \rightarrow L$, $m: L \rightarrow G$.
600
- # ! The output is a morphism $d: K \rightarrow D$ such that there exists a morphism $g: D \rightarrow G$
601
- # ! turing the four morphisms $l,d,m,g$ into a pushout diagram, i.e., such that
602
- # ! $m$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 1) and
603
- # ! $g$=<C>InjectionOfCofactorOfPushoutWithGivenPushout</C>([$l,d$], 2).
604
- # ! @Returns a morphism
605
- # ! @Arguments l, m
606
- DeclareOperation( " PushoutComplement" ,
607
- [ IsCapCategoryMorphism, IsCapCategoryMorphism ] );
0 commit comments