dat
(Data Access Toolkit) is a fast, lightweight Postgres library for Go.
-
Focused on Postgres. See
Insect
,Upsert
,SelectDoc
,QueryJSON
-
Built on a solid foundation sqlx
// child DB is *sqlx.DB DB.DB.Queryx(`SELECT * FROM users`)
-
All query methods (Exec(), Queryx(), QueryStruct(), etc.) have methods that respect
context.Context
(ExecContext(), QueryxContext(), QueryStructContext(), etc.)DB.DB.QueryxContext(context.Background(), `SELECT * FROM users`)
-
SQL and backtick friendly
DB.SQL(`SELECT * FROM people LIMIT 10`).QueryStructs(&people)
-
JSON Document retrieval (single trip to Postgres, requires Postgres 9.3+)
DB.SelectDoc("id", "user_name", "avatar"). Many("recent_comments", `SELECT id, title FROM comments WHERE id = users.id LIMIT 10`). Many("recent_posts", `SELECT id, title FROM posts WHERE author_id = users.id LIMIT 10`). One("account", `SELECT balance FROM accounts WHERE user_id = users.id`). From("users"). Where("id = $1", 4). QueryStruct(&obj) // obj must be agreeable with json.Unmarshal()
results in
{ "id": 4, "user_name": "mario", "avatar": "https://imgur.com/a23x.jpg", "recent_comments": [{ "id": 1, "title": "..." }], "recent_posts": [{ "id": 1, "title": "..." }], "account": { "balance": 42.0 } }
-
JSON marshalable bytes (requires Postgres 9.3+)
var b []byte b, _ = DB.SQL(`SELECT id, user_name, created_at FROM users WHERE user_name = $1 `, "mario", ).QueryJSON() // straight into map var obj map[string]interface{} DB.SQL(`SELECT id, user_name, created_at FROM users WHERE user_name = $1 `, "mario", ).QueryObject(&obj)
-
Ordinal placeholders
DB.SQL(`SELECT * FROM people WHERE state = $1`, "CA").Exec()
-
SQL-like API
err := DB. Select("id, user_name"). From("users"). Where("id = $1", id). QueryStruct(&user)
-
Redis caching
// cache result for 30 seconds key := "user:" + strconv.Itoa(user.id) err := DB. Select("id, user_name"). From("users"). Where("id = $1", user.id). Cache(key, 30 * time.Second, false). QueryStruct(&user)
-
Nested transactions
-
Per query timeout with database cancellation logic
pg_cancel_backend
-
SQL and slow query logging
-
Performant
- ordinal placeholder logic is optimized to be nearly as fast as using
?
dat
can interpolate queries locally resulting in performance increase over plain database/sql and sqlx. Benchmarks
- ordinal placeholder logic is optimized to be nearly as fast as using
Get it
go get -u gopkg.in/mgutz/dat.v2/sqlx-runner
Use it
import (
"database/sql"
_ "github.com/lib/pq"
"gopkg.in/mgutz/dat.v2"
"gopkg.in/mgutz/dat.v2/sqlx-runner"
)
// global database (pooling provided by SQL driver)
var DB *runner.DB
func init() {
// create a normal database connection through database/sql
db, err := sql.Open("postgres", "dbname=dat_test user=dat password=!test host=localhost sslmode=disable")
if err != nil {
panic(err)
}
// ensures the database can be pinged with an exponential backoff (15 min)
runner.MustPing(db)
// set to reasonable values for production
db.SetMaxIdleConns(4)
db.SetMaxOpenConns(16)
// set this to enable interpolation
dat.EnableInterpolation = true
// set to check things like sessions closing.
// Should be disabled in production/release builds.
dat.Strict = false
// Log any query over 10ms as warnings. (optional)
runner.LogQueriesThreshold = 10 * time.Millisecond
DB = runner.NewDB(db, "postgres")
}
type Post struct {
ID int64 `db:"id"`
Title string `db:"title"`
Body string `db:"body"`
UserID int64 `db:"user_id"`
State string `db:"state"`
UpdatedAt dat.NullTime `db:"updated_at"`
CreatedAt dat.NullTime `db:"created_at"`
}
func main() {
var post Post
err := DB.
Select("id, title").
From("posts").
Where("id = $1", 13).
QueryStruct(&post)
fmt.Println("Title", post.Title)
}
Query Builder
var posts []*Post
err := DB.
Select("title", "body").
From("posts").
Where("created_at > $1", someTime).
OrderBy("id ASC").
Limit(10).
QueryStructs(&posts)
Plain SQL
err = DB.SQL(`
SELECT title, body
FROM posts WHERE created_at > $1
ORDER BY id ASC LIMIT 10`,
someTime,
).QueryStructs(&posts)
Note: dat
does not trim the SQL string, thus any extra whitespace is
transmitted to the database.
In practice, SQL is easier to write with backticks. Indeed, the reason this library exists is most SQL builders introduce a DSL to insulate the user from SQL.
Query builders shine when dealing with data transfer objects, structs.
Query then scan result to struct(s)
var post Post
err := DB.
Select("id, title, body").
From("posts").
Where("id = $1", id).
QueryStruct(&post)
var posts []*Post
err = DB.
Select("id, title, body").
From("posts").
Where("id > $1", 100).
QueryStructs(&posts)
Query scalar values or a slice of values
var n int64
DB.SQL("SELECT count(*) FROM posts WHERE title=$1", title).QueryScalar(&n)
var ids []int64
DB.SQL("SELECT id FROM posts", title).QuerySlice(&ids)
dat DOES NOT map fields automatically like sqlx.
You must explicitly set db
struct tags in your types.
Embedded fields are mapped breadth-first.
type Realm struct {
RealmUUID string `db:"realm_uuid"`
}
type Group struct {
GroupUUID string `db:"group_uuid"`
*Realm
}
g := &Group{Realm: &Realm{"11"}, GroupUUID: "22"}
sql, args, err := InsertInto("groups").Columns("group_uuid", "realm_uuid").Record(g).ToSQL()
expected := `
INSERT INTO groups ("group_uuid", "realm_uuid")
VALUES ($1, $2)
`
Control which columns get inserted or updated when processing external data
// userData came in from http.Handler, prevent them from setting protected fields
DB.InsertInto("payments").
Blacklist("id", "updated_at", "created_at").
Record(userData).
Returning("id").
QueryScalar(&userData.ID)
// ensure session user can only update his information
DB.Update("users").
SetWhitelist(user, "user_name", "avatar", "quote").
Where("id = $1", session.UserID).
Exec()
applicable when dat.EnableInterpolation == true
Simpler IN queries which expand correctly
ids := []int64{10,20,30,40,50}
b := DB.SQL("SELECT * FROM posts WHERE id IN $1", ids)
b.MustInterpolate() == "SELECT * FROM posts WHERE id IN (10,20,30,40,50)"
dat
uses logxi for logging. By default,
logxi logs all warnings and errors to the console. dat
logs the
SQL and its arguments on any error. In addition, dat
logs slow queries
as warnings if runner.LogQueriesThreshold > 0
To trace all SQL, set environment variable
LOGXI=dat* yourapp
Use Returning
and QueryStruct
to insert and update struct fields in one
trip
var post Post
err := DB.
InsertInto("posts").
Columns("title", "state").
Values("My Post", "draft").
Returning("id", "created_at", "updated_at").
QueryStruct(&post)
Use Blacklist
and Whitelist
to control which record (input struct) fields
are inserted.
post := Post{Title: "Go is awesome", State: "open"}
err := DB.
InsertInto("posts").
Blacklist("id", "user_id", "created_at", "updated_at").
Record(&post).
Returning("id", "created_at", "updated_at").
QueryStruct(&post)
// use wildcard to include all columns
err := DB.
InsertInto("posts").
Whitelist("*").
Record(&post).
Returning("id", "created_at", "updated_at").
QueryStruct(&post)
Insert Multiple Records
// create builder
b := DB.InsertInto("posts").Columns("title")
// add some new posts
for i := 0; i < 3; i++ {
b.Record(&Post{Title: fmt.Sprintf("Article %s", i)})
}
// OR (this is more efficient as it does not do any reflection)
for i := 0; i < 3; i++ {
b.Values(fmt.Sprintf("Article %s", i))
}
// execute statement
_, err := b.Exec()
Inserts if not exists or select in one-trip to database
sql, args, err := DB.
Insect("tab").
Columns("b", "c").
Values(1, 2).
Where("d = $1", 3).
Returning("id", "f", "g").
ToSQL()
sql == `
WITH
sel AS (SELECT id, f, g FROM tab WHERE (d = $1)),
ins AS (
INSERT INTO "tab"("b","c")
SELECT $2,$3
WHERE NOT EXISTS (SELECT 1 FROM sel)
RETURNING "id","f","g"
)
SELECT * FROM ins UNION ALL SELECT * FROM sel
`
var other Post
err = DB.
Select("id, title").
From("posts").
Where("id = $1", post.ID).
QueryStruct(&other)
published := `
WHERE user_id = $1
AND state = 'published'
`
var posts []*Post
err = DB.
Select("id, title").
From("posts").
Scope(published, 100).
QueryStructs(&posts)
Use Returning
to fetch columns updated by triggers. For example,
an update trigger on "updated_at" column
err = DB.
Update("posts").
Set("title", "My New Title").
Set("body", "markdown text here").
Where("id = $1", post.ID).
Returning("updated_at").
QueryScalar(&post.UpdatedAt)
Upsert - Update or Insert
sql, args, err := DB.
Upsert("tab").
Columns("b", "c").
Values(1, 2).
Where("d=$1", 4).
Returning("f", "g").
ToSQL()
expected := `
WITH
upd AS (
UPDATE tab
SET "b" = $1, "c" = $2
WHERE (d=$3)
RETURNING "f","g"
), ins AS (
INSERT INTO "tab"("b","c")
SELECT $1,$2
WHERE NOT EXISTS (SELECT 1 FROM upd)
RETURNING "f","g"
)
SELECT * FROM ins UNION ALL SELECT * FROM upd
`
applicable when dat.EnableInterpolation == true
To reset columns to their default DDL value, use DEFAULT
. For example,
to reset payment\_type
res, err := DB.
Update("payments").
Set("payment_type", dat.DEFAULT).
Where("id = $1", 1).
Exec()
Use SetBlacklist
and SetWhitelist
to control which fields are updated.
// create blacklists for each of your structs
blacklist := []string{"id", "created_at"}
p := paymentStructFromHandler
err := DB.
Update("payments").
SetBlacklist(p, blacklist...)
Where("id = $1", p.ID).
Exec()
Use a map of attributes
attrsMap := map[string]interface{}{"name": "Gopher", "language": "Go"}
result, err := DB.
Update("developers").
SetMap(attrsMap).
Where("language = $1", "Ruby").
Exec()
result, err = DB.
DeleteFrom("posts").
Where("id = $1", otherPost.ID).
Limit(1).
Exec()
Define JOINs in argument to From
err = DB.
Select("u.*, p.*").
From(`
users u
INNER JOIN posts p on (p.author_id = u.id)
`).
WHERE("p.state = 'published'").
QueryStructs(&liveAuthors)
Scopes predefine JOIN and WHERE conditions.
Scopes may be used with DeleteFrom
, Select
and Update
.
As an example, a "published" scope might define published posts by user.
publishedPosts := `
INNER JOIN users u on (p.author_id = u.id)
WHERE
p.state == 'published' AND
p.deleted_at IS NULL AND
u.user_name = $1
`
unpublishedPosts := `
INNER JOIN users u on (p.author_id = u.id)
WHERE
p.state != 'published' AND
p.deleted_at IS NULL AND
u.user_name = $1
`
err = DB.
Select("p.*"). // must qualify columns
From("posts p").
Scope(publishedPosts, "mgutz").
QueryStructs(&posts)
All queries are made in the context of a connection which is acquired from the underlying SQL driver's pool
For one-off operations, use DB
directly
err := DB.SQL(sql).QueryStruct(&post)
For multiple operations, create a Tx
transaction.
defer Tx.AutoCommit()
or defer Tx.AutoRollback()
MUST be called
func PostsIndex(rw http.ResponseWriter, r *http.Request) {
tx, _ := DB.Begin()
defer tx.AutoRollback()
// Do queries with the session
var post Post
err := tx.Select("id, title").
From("posts").
Where("id = $1", post.ID).
QueryStruct(&post)
)
if err != nil {
// `defer AutoRollback()` is used, no need to rollback on error
r.WriteHeader(500)
return
}
// do more queries with transaction ...
// MUST commit or AutoRollback() will rollback
tx.Commit()
}
DB
and Tx
implement runner.Connection
interface to keep code DRY
func getUsers(conn runner.Connection) ([]*dto.Users, error) {
sql := `
SELECT *
FROM users
`
var users []*dto.Users
err := conn.SQL(sql).QueryStructs(&users)
if err != nil {
return err
}
return users
}
Nested transaction logic is as follows:
-
If
Commit
is called in a nested transaction, the operation results in no operation (NOOP). Only the top levelCommit
commits the transaction to the database. -
If
Rollback
is called in a nested transaction, then the entire transaction is rolled back.Tx.IsRollbacked
is set to true. -
Either
defer Tx.AutoCommit()
ordefer Tx.AutoRollback()
MUST BE CALLED for each correspondingBegin
. The internal state of nested transactions is tracked in these two methods.
func nested(conn runner.Connection) error {
tx, err := conn.Begin()
if err != nil {
return err
}
defer tx.AutoRollback()
_, err := tx.SQL(`INSERT INTO users (email) values $1`, "me@home.com").Exec()
if err != nil {
return err
}
// prevents AutoRollback
tx.Commit()
}
func top() {
tx, err := DB.Begin()
if err != nil {
logger.Fatal("Could not create transaction")
}
defer tx.AutoRollback()
err := nested(tx)
if err != nil {
return
}
// top level commits the transaction
tx.Commit()
}
A timeout may be set on any Query*
or Exec
with the Timeout
method. When a
timeout is set, the query is run in a separate goroutine and should a timeout
occur dat will cancel the query via Postgres' pg_cancel_backend
.
err := DB.Select("SELECT pg_sleep(1)").Timeout(1 * time.Millisecond).Exec()
err == dat.ErrTimedout
Use dat.NullTime
type to properly handle nullable dates
from JSON and Postgres.
applicable when dat.EnableInterpolation == true
dat
provides often used constants in SQL statements
dat.DEFAULT
- insertsDEFAULT
dat.NOW
- insertsNOW()
UnsafeStrings and constants will panic unless dat.EnableInterpolation == true
To define SQL constants, use UnsafeString
const CURRENT_TIMESTAMP = dat.UnsafeString("NOW()")
DB.SQL("UPDATE table SET updated_at = $1", CURRENT_TIMESTAMP)
UnsafeString
is exactly that, UNSAFE. If you must use it, create a
constant and NEVER use UnsafeString
directly as an argument like this
DB.SQL("UPDATE table SET updated_at = $1", dat.UnsafeString(someVar))
Load scalar and slice values.
var id int64
var userID string
err := DB.
Select("id", "user_id").From("posts").Limit(1).QueryScalar(&id, &userID)
var ids []int64
err = DB.Select("id").From("posts").QuerySlice(&ids)
dat implements caching backed by an in-memory or Redis store. The in-memory store is not recommended for production use. Caching can cache any struct or primitive type that can be marshaled/unmarshaled cleanly with the json package due to Redis being a string value store.
Time is especially problematic as JavaScript, Postgres and Go
have different time formats. Use the type dat.NullTime
if you are
getting cannot parse time
errors.
Caching is performed before the database driver lessening the workload on the database.
// key-value store (kvs) package
import "gopkg.in/mgutz/dat.v2/kvs"
func init() {
// Redis: namespace is the prefix for keys and should be unique
store, err := kvs.NewRedisStore("namespace:", ":6379", "passwordOrEmpty")
// Or, in-memory store provided by [go-cache](https://github.com/pmylund/go-cache)
cleanupInterval := 30 * time.Second
store = kvs.NewMemoryStore(cleanupInterval)
runner.SetCache(store)
}
// Cache states query for a year using key "namespace:states"
b, err := DB.
SQL(`SELECT * FROM states`).
Cache("states", 365 * 24 * time.Hour, false).
QueryJSON()
// Without a key, the checksum of the query is used as the cache key.
// In this example, the interpolated SQL will contain their user_name
// (if EnableInterpolation is true) effectively caching each user.
//
// cacheID == checksum("SELECT * FROM users WHERE user_name='mario'")
b, err := DB.
SQL(`SELECT * FROM users WHERE user_name = $1`, user).
Cache("", 365 * 24 * time.Hour, false).
QueryJSON()
// Prefer using known unique IDs to avoid the computation cost
// of the checksum key.
key = "user" + user.UserName
b, err := DB.
SQL(`SELECT * FROM users WHERE user_name = $1`, user).
Cache(key, 15 * time.Minute, false).
QueryJSON()
// Set invalidate to true to force setting the key
statesUpdated := true
b, err := DB.
SQL(`SELECT * FROM states`).
Cache("states", 365 * 24 * time.Hour, statesUpdated).
QueryJSON()
// Clears the entire cache
runner.Cache.FlushDB()
runner.Cache.Del("fookey")
Interpolation is DISABLED by default. Set dat.EnableInterpolation = true
to enable.
dat
can interpolate locally to inline query arguments. For example,
this statement
go
db.Exec(
"INSERT INTO (a, b, c, d) VALUES ($1, $2, $3, $4)",
[]interface{}[1, 2, 3, 4],
)
is sent to the database with inlined args bypassing prepared statement logic in the lib/pq layer
"INSERT INTO (a, b, c, d) VALUES (1, 2, 3, 4)"
Interpolation provides these benefits:
- Performance improvements
- Debugging/tracing is simpler with interpolated SQL
- May use safe SQL constants like
dat.NOW
anddat.DEFAULT
- Expand placeholders with slice values
$1 => (1, 2, 3)
Read SQL Interpolation in wiki for more details and SQL injection.
GO111MODULE=off go get gopkg.in/godo.v2/cmd/godo
godo createdb
godo test