|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# End-to-end Test of SOSS Simulations\n", |
| 8 | + "This notebook will simulate SOSS data using `awesimsoss` and then quantify how well `specialsoss` can extract it.\n", |
| 9 | + "\n", |
| 10 | + "## Imports" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": null, |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [], |
| 18 | + "source": [ |
| 19 | + "# Imports\n", |
| 20 | + "from astropy.modeling.models import BlackBody1D\n", |
| 21 | + "from astropy.modeling.blackbody import FLAM\n", |
| 22 | + "import astropy.units as q\n", |
| 23 | + "from awesimsoss import TSO\n", |
| 24 | + "from bokeh.plotting import figure, show\n", |
| 25 | + "from bokeh.io import output_notebook\n", |
| 26 | + "import numpy as np\n", |
| 27 | + "from specialsoss import SossExposure\n", |
| 28 | + "output_notebook()" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "## Simulation\n", |
| 36 | + "First let's make a 1D blackbody spectrum." |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "# Variables\n", |
| 46 | + "teff = 2000*q.K\n", |
| 47 | + "\n", |
| 48 | + "# Generate a blackbody at the given temperature from 0.5 - 3 um\n", |
| 49 | + "bb = BlackBody1D(temperature=teff)\n", |
| 50 | + "wave = np.linspace(0.5, 3., 1000)*q.um\n", |
| 51 | + "flux = bb(wave).to(FLAM, q.spectral_density(wave))*1E-8\n", |
| 52 | + "\n", |
| 53 | + "# Plot it\n", |
| 54 | + "fig = figure(width=800, height=300, x_axis_label='Wavelength [um]', y_axis_label='Flux Density [{}]'.format(flux.unit))\n", |
| 55 | + "fig.line(wave, flux, legend='Input Spectrum')\n", |
| 56 | + "show(fig)" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "markdown", |
| 61 | + "metadata": {}, |
| 62 | + "source": [ |
| 63 | + "Lets make a SOSS simulation for this star with 2 integrations and 2 groups using `awesimsoss`." |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "# Initialize the TSO object\n", |
| 73 | + "sim = TSO(nints=2, ngrps=2, star=[wave, flux])\n", |
| 74 | + "\n", |
| 75 | + "# Run the simulation\n", |
| 76 | + "sim.simulate()" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": null, |
| 82 | + "metadata": {}, |
| 83 | + "outputs": [], |
| 84 | + "source": [ |
| 85 | + "# Run the plot method\n", |
| 86 | + "sim.plot()" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "markdown", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "Now let's export the simulation to a pipeline ingestible '_uncal.fits' file." |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": null, |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "# Name the file\n", |
| 103 | + "filename = 'SOSS_simulation_uncal.fits'\n", |
| 104 | + "\n", |
| 105 | + "# Export the data\n", |
| 106 | + "sim.export(filename)" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "markdown", |
| 111 | + "metadata": {}, |
| 112 | + "source": [ |
| 113 | + "## Reduction\n", |
| 114 | + "Next let's load the \"raw\" data into `specialsoss` by passing a filename to the `SossExposure` class." |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": null, |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [], |
| 122 | + "source": [ |
| 123 | + "# Initialize the exposure object with the '_uncal.fits' file\n", |
| 124 | + "obs = SossExposure(filename)" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "markdown", |
| 129 | + "metadata": {}, |
| 130 | + "source": [ |
| 131 | + "We can calibrate the data using the JWST reduction pipeline with the `calibrate` method." |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": null, |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [], |
| 139 | + "source": [ |
| 140 | + "# Run DETECTOR1 and SPEC2 pipelines\n", |
| 141 | + "obs.calibrate()" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": null, |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [], |
| 149 | + "source": [ |
| 150 | + "# Check out object info\n", |
| 151 | + "obs.info" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "markdown", |
| 156 | + "metadata": {}, |
| 157 | + "source": [ |
| 158 | + "We can see the calibrated and uncalibrated data are stored as object properties (`uncal`, `rate`, `rateints`, `ramp`, `calints`, and `x1dints`) corresponding to the JWST pipeline dataproducts for SOSS mode, which can each be plotted and analyzed independently." |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "code", |
| 163 | + "execution_count": null, |
| 164 | + "metadata": {}, |
| 165 | + "outputs": [], |
| 166 | + "source": [ |
| 167 | + "# Inspect `rateints` data\n", |
| 168 | + "# obs.rateints.data" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "markdown", |
| 173 | + "metadata": {}, |
| 174 | + "source": [ |
| 175 | + "## Extraction\n", |
| 176 | + "\n", |
| 177 | + "Now let's perform the spectral extraction on the `rateints` data." |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "# Run extraction method\n", |
| 187 | + "obs.extract('sum', 'rateints', name='Extracted Spectrum')" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "markdown", |
| 192 | + "metadata": {}, |
| 193 | + "source": [ |
| 194 | + "We can take a look at the extracted spectra like so." |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": null, |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [], |
| 202 | + "source": [ |
| 203 | + "# Plot extracted time series spectra\n", |
| 204 | + "obs.plot_results('Extracted Spectrum')" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "markdown", |
| 209 | + "metadata": {}, |
| 210 | + "source": [ |
| 211 | + "Finally, let's compare the extracted spectrum for the first integration with the input spectrum." |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": null, |
| 217 | + "metadata": {}, |
| 218 | + "outputs": [], |
| 219 | + "source": [ |
| 220 | + "# Plot input spectrum...\n", |
| 221 | + "fig = figure(width=800, height=300, x_axis_label='Wavelength [um]', y_axis_label='Flux Density [{}]'.format(flux.unit))\n", |
| 222 | + "fig.line(wave, flux, legend='Input Spectrum')\n", |
| 223 | + "\n", |
| 224 | + "# ...and extracted spectrum\n", |
| 225 | + "wave_ext = obs.results['Extracted Spectrum']['wavelength']\n", |
| 226 | + "flux_ext = obs.results['Extracted Spectrum']['flux'][0]\n", |
| 227 | + "fig.line(wave_ext, flux_ext, legend='Extracted Spectrum')\n", |
| 228 | + "\n", |
| 229 | + "show(fig)" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "markdown", |
| 234 | + "metadata": {}, |
| 235 | + "source": [ |
| 236 | + "Voila!" |
| 237 | + ] |
| 238 | + } |
| 239 | + ], |
| 240 | + "metadata": { |
| 241 | + "kernelspec": { |
| 242 | + "display_name": "awesimsoss", |
| 243 | + "language": "python", |
| 244 | + "name": "awesimsoss" |
| 245 | + }, |
| 246 | + "language_info": { |
| 247 | + "codemirror_mode": { |
| 248 | + "name": "ipython", |
| 249 | + "version": 3 |
| 250 | + }, |
| 251 | + "file_extension": ".py", |
| 252 | + "mimetype": "text/x-python", |
| 253 | + "name": "python", |
| 254 | + "nbconvert_exporter": "python", |
| 255 | + "pygments_lexer": "ipython3", |
| 256 | + "version": "3.6.8" |
| 257 | + } |
| 258 | + }, |
| 259 | + "nbformat": 4, |
| 260 | + "nbformat_minor": 2 |
| 261 | +} |
0 commit comments