|
| 1 | +from typing import Optional, Tuple |
| 2 | + |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +from transformers import PreTrainedTokenizer |
| 6 | + |
| 7 | +from colossalai.utils import get_current_device |
| 8 | + |
| 9 | +from .struct import DrafterOutput |
| 10 | + |
| 11 | + |
| 12 | +class Drafter: |
| 13 | + """Container for the Drafter Model (Assistant Model) used in Speculative Decoding. |
| 14 | +
|
| 15 | + Args: |
| 16 | + model (nn.Module): The drafter model. |
| 17 | + tokenizer (transformers.PreTrainedTokenizer): The tokenizer for the drafter model. |
| 18 | + max_spec_num (int): The maximum number of tokens to speculate. |
| 19 | + device (torch.device): The device for the drafter model. |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__( |
| 23 | + self, model: nn.Module, tokenizer: PreTrainedTokenizer, max_spec_num: int, device: torch.device = None |
| 24 | + ): |
| 25 | + self._drafter_model = model |
| 26 | + self._tokenizer = tokenizer |
| 27 | + self.max_spec_num = max_spec_num |
| 28 | + self.do_sample = False |
| 29 | + self.sample_fn = None |
| 30 | + self._device = device or get_current_device() |
| 31 | + self._past_key_values = None |
| 32 | + |
| 33 | + @property |
| 34 | + def past_key_values(self) -> Optional[Tuple[Tuple[torch.FloatTensor]]]: |
| 35 | + return self._past_key_values |
| 36 | + |
| 37 | + # Debug usage for now |
| 38 | + @property |
| 39 | + def past_key_values_shape(self): |
| 40 | + if self._past_key_values is None: |
| 41 | + return [] |
| 42 | + return self._past_key_values[0][0].shape |
| 43 | + |
| 44 | + def get_model(self) -> nn.Module: |
| 45 | + return self._drafter_model |
| 46 | + |
| 47 | + def reset_sample_method(self, sample_fn: callable) -> None: |
| 48 | + self.do_sample = True |
| 49 | + self.sample_fn = sample_fn |
| 50 | + |
| 51 | + def clear_sample_method(self) -> None: |
| 52 | + self.do_sample = False |
| 53 | + self.sample_fn = None |
| 54 | + |
| 55 | + def reset_max_spec_num(self, n: int) -> None: |
| 56 | + assert isinstance(n, int) and n > 1 |
| 57 | + self.max_spec_num = n |
| 58 | + |
| 59 | + def reset_past_key_values(self, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None) -> None: |
| 60 | + self._past_key_values = past_key_values |
| 61 | + |
| 62 | + def trim_kv_cache(self, invalid_token_num) -> Tuple[Tuple[torch.FloatTensor]]: |
| 63 | + # Tuple of kv cache tensors: num_layers x 2 x (bsz x num_heads x seq_len x head_dim) |
| 64 | + # Trim the last `invalid_token_num` kv caches |
| 65 | + # The verifier (main model) might reject `invalid_token_num` tokens, |
| 66 | + # and so that we have to trim the invalid tokens for the kv cache of the drafter model. |
| 67 | + assert self._past_key_values is not None |
| 68 | + trimmed_past_key_values = [] |
| 69 | + for layer_idx in range(len(self._past_key_values)): |
| 70 | + past_key_value = self._past_key_values[layer_idx] |
| 71 | + trimmed_past_key_values.append( |
| 72 | + ( |
| 73 | + past_key_value[0][:, :, :-invalid_token_num, :], |
| 74 | + past_key_value[1][:, :, :-invalid_token_num, :], |
| 75 | + ) |
| 76 | + ) |
| 77 | + self._past_key_values = tuple(trimmed_past_key_values) |
| 78 | + return self._past_key_values |
| 79 | + |
| 80 | + @torch.inference_mode() |
| 81 | + def speculate( |
| 82 | + self, input_ids: torch.Tensor, n: int, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None |
| 83 | + ) -> DrafterOutput: |
| 84 | + """Generate n tokens using the drafter model. |
| 85 | +
|
| 86 | + Args: |
| 87 | + input_ids (torch.Tensor): Input token ids. |
| 88 | + n (int): Number of tokens to speculate. |
| 89 | + past_key_values (Tuple[Tuple[torch.FloatTensor]]): The past key values of the input sequence. |
| 90 | + """ |
| 91 | + |
| 92 | + assert 0 <= n <= self.max_spec_num, f"Invalid number {n} to speculate" |
| 93 | + |
| 94 | + # FIXME For compatibility with transformers 4.36.2 (versions before 4.38.0) |
| 95 | + if input_ids.dim() == 1: |
| 96 | + input_ids = input_ids.unsqueeze(0) |
| 97 | + |
| 98 | + if past_key_values is None: |
| 99 | + past_key_values = self._past_key_values |
| 100 | + |
| 101 | + logits = [] |
| 102 | + token_ids = [] |
| 103 | + |
| 104 | + for _ in range(n): |
| 105 | + outputs = self._drafter_model( |
| 106 | + input_ids, |
| 107 | + return_dict=True, |
| 108 | + use_cache=True, |
| 109 | + past_key_values=past_key_values, |
| 110 | + ) |
| 111 | + next_token_logits = outputs.logits[:, -1, :] |
| 112 | + |
| 113 | + # Skip logits_processor for drafter model |
| 114 | + |
| 115 | + # Sample |
| 116 | + if self.do_sample: |
| 117 | + if self.sample_fn is not None: |
| 118 | + probs = self.sample_fn(next_token_logits) |
| 119 | + else: |
| 120 | + probs = nn.functional.softmax(next_token_logits, dim=-1) |
| 121 | + next_token_ids = torch.multinomial(probs, num_samples=1).squeeze(1) |
| 122 | + else: |
| 123 | + next_token_ids = torch.argmax(next_token_logits, dim=-1) |
| 124 | + |
| 125 | + logits.append(next_token_logits) |
| 126 | + token_ids.append(next_token_ids) |
| 127 | + if next_token_ids.item() == self._tokenizer.eos_token_id: |
| 128 | + # TODO support bsz > 1 |
| 129 | + break |
| 130 | + input_ids = next_token_ids[:, None] |
| 131 | + past_key_values = outputs.past_key_values |
| 132 | + |
| 133 | + speculated_length = len(token_ids) # TODO For now, only support bsz 1 |
| 134 | + logits = torch.concat(logits, dim=0) |
| 135 | + token_ids = torch.concat(token_ids, dim=-1) |
| 136 | + # update past_key_values |
| 137 | + self._past_key_values = past_key_values |
| 138 | + |
| 139 | + out = DrafterOutput( |
| 140 | + speculated_length=speculated_length, logits=logits, next_tokens=token_ids, past_key_values=past_key_values |
| 141 | + ) |
| 142 | + return out |
0 commit comments