Learning a Deep Ensemble Network with Band Importance for Hyperspectral Object Tracking
- The tools for evaluating the compared trackers can be found in the folder "plot-tools".
- The source code can be found in the "code" folder for processing 16-bands data and 25-bands hyperspectral images.
Download training and testing datasets in https://www.hsitracking.com/.
1. The format of training dataset:
rootDir |-
videoName1
|- HSI
|- 0001.png
|- 0002.png
...
|- XXXX.png
|- groundturth_rect.txt
videoName2
|- HSI
|- 0001.png
|- 0002.png
...
|- XXXX.png
|- groundturth_rect.txt
...
videoNameN
|- HSI
|- 0001.png
|- 0002.png
...
|- XXXX.png
|- groundturth_rect.txt
2. The format of testing dataset:
rootDir |-
test_HSI
|- videoName1
|- groundturth_rect.txt
|- HSI
|- 0001.png
|- 0002.png
|- ...
|- XXXX.png
|- videoName2
|- groundturth_rect.txt
|- HSI
|- 0001.png
|- 0002.png
|- ...
|- XXXX.png
...
|- videoNameM
|- groundturth_rect.txt
|- HSI
|- 0001.png
|- 0002.png
|- ...
|- XXXX.png
More results can be found in:
https://pan.baidu.com/s/1BcePsITWMrP59nUcU_eJcg
Access code: 1234
If these codes are helpful for you, please cite this paper:
@ARTICLE{10128966,
author={Li, Zhuanfeng and Xiong, Fengchao and Zhou, Jun and Lu, Jianfeng and Qian, Yuntao},
journal={IEEE Transactions on Image Processing},
title={Learning a Deep Ensemble Network With Band Importance for Hyperspectral Object Tracking},
year={2023},
volume={32},
number={},
pages={2901-2914},
doi={10.1109/TIP.2023.3263109}}