Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

Description

This repository contains the pyTorch implementation of ECCV2018 paper ''CrossNet: An End-to-end Reference-based Super Resolution Network using Cross-scale Warping''. Note that we use a batchsize of 4 instead of 2, and a slightly different input for flownet (see usage 1), results with ~0.2dB higher PSNR is achieved.

We would like to thank Yang Tan (https://github.com/tanyang1231) for implementating the code using pyTorch.

prerequisite library

pytorch opencv h5py

usage

  1. prepare an hdf5 file, which contains /img_HR, /img_LR, /img_MDSR, /img_LR_upsample. /img_HR is used as reference input and ground truth, /img_LR is used as low resolution input, /img_MDSR is the MDSR upsampled image, and /img_LR_upsample is bicubically upsampled image. (Different from the original paper, in this version of code, we use Flownet with bicubically upsampled image and reference image to generate optical flow)

  2. mkdir checkpoints_charbonnier_3

  3. python -u train_multi_warping.py --dataset Flower --display 50 --batch_size 2 --step_size 150000 --loss CharbonnierLoss --optim Adam --lr 0.0001 --checkpoints_dir ./checkpoints_charbonnier_3/ --checkpoint 195000 --checkpoint_file ./checkpoints_charbonnier_3/CP195000.pth

citation

Please cite our paper if you find it interesting!

@inproceedings{zheng2018crossnet,
title={CrossNet: An End-to-end Reference-based Super Resolution Network using Cross-scale Warping},
author={Zheng, Haitian and Ji, Mengqi and Wang, Haoqian and Liu, Yebin and Fang, Lu},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={88--104},
year={2018}
}

About

No description, website, or topics provided.

Resources

Releases

No releases published

Packages

No packages published