-
2024.07.01 DAL is accepted to ECCV24.
-
2023.11.08 Support DAL for 3D object detection with LiDAR-camera fusion. [Arxiv]
Config | mAP | NDS | Latency(ms) | FPS | Model | Log |
---|---|---|---|---|---|---|
BEVDet-R50 | 28.3 | 35.0 | 29.1/4.2/33.3 | 30.7 | baidu | baidu |
BEVDet-R50-CBGS | 31.3 | 39.8 | 28.9/4.3/33.2 | 30.1 | baidu | baidu |
BEVDet-R50-4D-CBGS | 31.4/35.4# | 44.7/44.9# | 29.1/4.3/33.4 | 30.0 | baidu | baidu |
BEVDet-R50-4D-Depth-CBGS | 36.1/36.2# | 48.3/48.4# | 35.7/4.0/39.7 | 25.2 | baidu | baidu |
BEVDet-R50-4D-Stereo-CBGS | 38.2/38.4# | 49.9/50.0# | - | - | baidu | baidu |
BEVDet-R50-4DLongterm-CBGS | 34.8/35.4# | 48.2/48.7# | 30.8/4.2/35.0 | 28.6 | baidu | baidu |
BEVDet-R50-4DLongterm-Depth-CBGS | 39.4/39.9# | 51.5/51.9# | 38.4/4.0/42.4 | 23.6 | baidu | baidu |
BEVDet-R50-4DLongterm-Stereo-CBGS | 41.1/41.5# | 52.3/52.7# | - | - | baidu | baidu |
BEVDet-STBase-4D-Stereo-512x1408-CBGS | 47.2# | 57.6# | - | - | baidu | baidu |
DAL-Tiny | 67.4 | 71.3 | - | 16.6 | baidu | baidu |
DAL-Base | 70.0 | 73.4 | - | 10.7 | baidu | baidu |
DAL-Large | 71.5 | 74.0 | - | 6.10 | baidu | baidu |
# align previous frame bev feature during the view transformation.
Depth: Depth supervised from Lidar as BEVDepth.
Longterm: cat 8 history frame in temporal modeling. 1 by default.
Stereo: A private implementation that concat cost-volumn with image feature before executing model.view_transformer.depth_net.
The latency includes Network/Post-Processing/Total. Training without CBGS is deprecated.
Config | mIOU | Model | Log |
---|---|---|---|
BEVDet-Occ-R50-4D-Stereo-2x | 36.1 | baidu | baidu |
BEVDet-Occ-R50-4D-Stereo-2x-384x704 | 37.3 | baidu | baidu |
BEVDet-Occ-R50-4DLongterm-Stereo-2x-384x704 | 39.3 | baidu | baidu |
BEVDet-Occ-STBase-4D-Stereo-2x | 42.0 | baidu | baidu |
Backend | 256x704 | 384x1056 | 512x1408 | 640x1760 |
---|---|---|---|---|
PyTorch | 28.9 | 49.7 | 78.7 | 113.4 |
TensorRT | 14.0 | 22.8 | 36.5 | 53.0 |
TensorRT-FP16 | 4.94 | 7.96 | 12.4 | 17.9 |
TensorRT-INT8 | 2.93 | 4.41 | 6.58 | 9.19 |
TensorRT-INT8(Xavier) | 25.0 | - | - | - |
- Evaluate with BEVDet-R50-CBGS on a RTX 3090 GPU by default. We omit the postprocessing, which spends up to 5 ms with the PyTorch backend.
step 1. Please prepare environment as that in Docker.
step 2. Prepare bevdet repo by.
git clone https://github.com/HuangJunJie2017/BEVDet.git
cd BEVDet
pip install -v -e .
step 3. Prepare nuScenes dataset as introduced in nuscenes_det.md and create the pkl for BEVDet by running:
python tools/create_data_bevdet.py
step 4. For Occupancy Prediction task, download (only) the 'gts' from CVPR2023-3D-Occupancy-Prediction and arrange the folder as:
└── nuscenes
├── v1.0-trainval (existing)
├── sweeps (existing)
├── samples (existing)
└── gts (new)
# single gpu
python tools/train.py $config
# multiple gpu
./tools/dist_train.sh $config num_gpu
# single gpu
python tools/test.py $config $checkpoint --eval mAP
# multiple gpu
./tools/dist_test.sh $config $checkpoint num_gpu --eval mAP
# with pre-computation acceleration
python tools/analysis_tools/benchmark.py $config $checkpoint --fuse-conv-bn
# 4D with pre-computation acceleration
python tools/analysis_tools/benchmark_sequential.py $config $checkpoint --fuse-conv-bn
# view transformer only
python tools/analysis_tools/benchmark_view_transformer.py $config $checkpoint
python tools/analysis_tools/get_flops.py configs/bevdet/bevdet-r50.py --shape 256 704
- Private implementation. (Visualization remotely/locally)
python tools/test.py $config $checkpoint --format-only --eval-options jsonfile_prefix=$savepath
python tools/analysis_tools/vis.py $savepath/pts_bbox/results_nusc.json
1. install mmdeploy from https://github.com/HuangJunJie2017/mmdeploy
2. convert to TensorRT
python tools/convert_bevdet_to_TRT.py $config $checkpoint $work_dir --fuse-conv-bn --fp16 --int8
3. test inference speed
python tools/analysis_tools/benchmark_trt.py $config $engine
This project is not possible without multiple great open-sourced code bases. We list some notable examples below.
Beside, there are some other attractive works extend the boundary of BEVDet.
If this work is helpful for your research, please consider citing the following BibTeX entries.
@article{huang2023dal,
title={Detecting As Labeling: Rethinking LiDAR-camera Fusion in 3D Object Detection},
author={Huang, Junjie and Ye, Yun and Liang, Zhujin and Shan, Yi and Du, Dalong},
journal={arXiv preprint arXiv:2311.07152},
year={2023}
}
@article{huang2022bevpoolv2,
title={BEVPoolv2: A Cutting-edge Implementation of BEVDet Toward Deployment},
author={Huang, Junjie and Huang, Guan},
journal={arXiv preprint arXiv:2211.17111},
year={2022}
}
@article{huang2022bevdet4d,
title={BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection},
author={Huang, Junjie and Huang, Guan},
journal={arXiv preprint arXiv:2203.17054},
year={2022}
}
@article{huang2021bevdet,
title={BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View},
author={Huang, Junjie and Huang, Guan and Zhu, Zheng and Yun, Ye and Du, Dalong},
journal={arXiv preprint arXiv:2112.11790},
year={2021}
}