Skip to content

Library for manipulating Abstract Meaning Representation (AMR) graphs

License

Notifications You must be signed in to change notification settings

hviana/amr_utils

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

amr_utils

Library for manipulating Abstract Meaning Representation (AMR) graphs

How to use

This library has useful methods to process the understanding of human language, with emphasis on the methods joinGraph, searchPattern and search. Examples:

const graph1 = await NLP.parse("mary is cool");
/*
{
  c: [ [ ":instance", "cool-04" ], [ ":ARG1", "p" ] ],
  p: [ [ ":instance", "person" ], [ ":name", "n" ] ],
  n: [ [ ":instance", "name" ], [ ":op1", '"mary"' ] ]
}
 */
const graph2 = await NLP.parse("joe is ugly");
/*
{
  u: [ [ ":instance", "ugly" ], [ ":domain", "p" ] ],
  p: [ [ ":instance", "person" ], [ ":name", "n" ] ],
  n: [ [ ":instance", "name" ], [ ":op1", '"Joe"' ] ]
}

 */
const merged_graph = utils.joinGraph(graph1, {
  graph: graph2,
  mode: "merge",
  rangeIds: ["p"], //starts operation on node 'p'
}, ["p"]);
/*
{
  c: [ [ ":instance", "cool-04" ], [ ":ARG1", "p" ] ],
  p: [ [ ":name", "a" ], [ ":instance", "person" ] ],
  a: [ [ ":instance", "and" ], [ ":op1", "n" ], [ ":op2", "n1" ] ],
  n: [ [ ":instance", "name" ], [ ":op1", '"mary"' ] ],
  n1: [ [ ":instance", "name" ], [ ":op1", '"Joe"' ] ]
}
 */

See the documentation:

  /**
   * Performs the following operations on graphs: 'append', 'replace' and 'merge'.
   * @param {graph} AMRGraph, the main graph that will be used in the operation.
   * @param {piece} GraphPiece, The other graph that will be 'joined' to the main graph
   * given an operation, the parameters of this interface are:
   * 'graph' => the graph itself.
   * 'rangeIds' => an array of 2 positions (start node and end node), if not specified both
   *          will be the root; if only rangeIds[0] is not specified,
   *          it will assume the value of rangeIds[1].
   * 'relations' => a 2-position vector, it's the "glue" relationships
   *          for the "append" operation, the input relationship and (optionally)
   *          the output relationship.
   * 'mode' => operation type, accepts the values: 'append', 'replace' and 'merge'.
   * 'joinEntity' => entity used to 'join' nodes, if not specified, the entity
   *          'and' will be used.
   * 'joinRel' => relation used to 'join' nodes, if not specified, the relation
   *          ':op' will be used.
   * 'isJoinable' => optional, a function "(id1:string, id2:string, graph:AMRGraph, utils: AMRUtils) => boolean",
   *          must return true if the two nodes are joinable.
   * @param {rangeIds} string[], an array of 2 positions (start node and end node),
   * if not specified both will be the root; if only rangeIds[0] is not specified,
   * it will assume the value of rangeIds[1].
   * @param {algParams} AlgParams, the algorithm parameters. Identifies "non-joinable"
   *  relationships and entities. Accepts regular expressions and strings. if not specified:
   * 'notJoinableRelations' => [/^:instance$/].
   * 'notJoinableEntities' => [/^name$/].
   * @return {{graph:AMRGraph;map:{[key:string]:string}}} The new graph generated given the operations,
   *          and the map which maps the old ids of the joined graph to the new ids in the new graph.
   */
  joinGraph(
    graph: AMRGraph,
    piece: GraphPiece,
    rangeIds?: [string, string?],
    algParams?: AlgParams,
  ): AMRGraph

  /**
   * Does a heuristic search of the graph based on a pattern,
   * which pattern is a graph and a reference (id / amr var name) to an a usually "amr-unknown" instance node.
   * Each possible answer has a score, the higher the better.
   * @param {graph} AMRGraph, the graph.
   * @param {patternGraph} AMRGraph, the graph representing a pattern.
   * @param {patternFindId} string, optional, pattern graph id to look for, if not specified, look for instance nodes "amr-unknown".
   * @param {getScores} boolean, optional, if true, returns the scores of the nodes found; default true.
   * @param {func} ScoreFunc optional, a function "(id1:string, id2:string, graph:AMRGraph, patternGraph: AMRGraph, utils: AMRUtils) => number",
   *          returns the score of 2 nodes, larger values ​​represent a more relevant pattern,
   *          return 0 if there is no pattern, this optimizes the algorithm.
   * @return {ScoreResultOrString[]} An ordered list with the results.
   */
  searchPattern(
    graph: AMRGraph,
    patternGraph: AMRGraph,
    patternFindId: string,
    getScores: boolean = true,
    func?: ScoreFunc,
  ): ScoreResult[] | string[]

  /**
   *  Performs a search given a condition, based on the types
   *  of relationships and instances of the graph, returning
   *  the nodes/ids (names of AMR variables) that match
   *  the condition. The search is done starting with the "root"
   *  parameter. The first id is returned given the minimum search
   *  depth, this gives an idea of ​​"context" given the specified root.
   *  If you want to search the entire depth of the graph,
   *  you need to pass the argument fullSearch=true.
   * @param {graph} AMRGraph, the graph.
   * @param {subjectInstance} stringOrRegExp, subject instance name (ex: "person"), can be empty.
   * @param {predicate} stringOrRegExp, predicate name (ex: ":mod"), can be empty.
   * @param {objectInstance} stringOrRegExp, subject instance name (ex: "name"), can be empty.
   * @param {root} AMRGraph, search start node, if it is empty it will start at the root.
   * @param {fullSearch} boolean, search full graph depth.
   * @param {func} SearchFunc optional, a function "(parent:string,relation:string,child:string,graph:AMRGraph,utils:AMRUtils)=>string[]",
   *                          the function need to return found ids.
   *                          This search still considers the previous parameters like "subjectInstance" and so on;
   *                          if you want to ignore them, you can pass the value "" in these parameters.
   * @return {string[]} the ids that satisfy the condition given the minimum search depth.
   */
  search(
    graph: AMRGraph,
    subjectInstance?: (RegExp | string),
    predicate?: (RegExp | string),
    objectInstance?: (RegExp | string),
    root?: string,
    fullSearch?: boolean,
  ): string[]

   /**
   * Returns a subgraph from a starting node (id), to an ending node (endId if it exists).
   * @param {graph} AMRGraph, the graph.
   * @param {id} string, start of subgraph.
   * @param {endId} string, end of subgraph, optional.
   * @return {AMRGraph} the subgraph.
   */
  subGraphAt(
    graph: AMRGraph,
    id: string,
    endId?: string,
  ): AMRGraph

  /**
   * Finds the id (name of the AMR variable) of the root of a graph.
   * @param {graph} AMRGraph, the graph.
   * @return {string} the id value of the root of a graph.
   */
  rootId(graph: AMRGraph): string

  /**
   * Returns a graph with a single node given an instance name.
   * @param {instance} string, instance name.
   * @return {AMRGraph} the graph.
   */
  createInstance(instance: string): AMRGraph

  /**
   * clone a graph.
   * @param {graphs} AMRGraph[], Graph that will be cloned.
   * @return {AMRGraph} the clone.
   */
  clone(graph: AMRGraph): AMRGraph

  /**
   * Clone N graphs.
   * @param {graphs} AMRGraph[], Graphs that will be cloned.
   * @return {AMRGraph[]} the clones.
   */
  cloneN(graphs: AMRGraph[]): AMRGraph[]

  /**
   * Convert triples to an AMR graph instance from the library.
   * @param {triples} Triple[], triples, in the form: [['s','p','o'],...].
   * @return {AMRGraph} AMR graph instance.
   */
  triplesToAMRGraph(triples: Triple[]): AMRGraph

  /**
   * Convert AMR graph instance from the library to the triples.
   * @param {AMRGraph[]} AMRGraph instance.
   * @return {Triple[]} triples, in the form: [['s','p','o'],...].
   */
  AMRGraphToTriples(graph: AMRGraph): Triple[]

  /**
   * Returns the instance name of a node.
   * @param {graph} AMRGraph instance.
   * @param {id} string, id/var name of node.
   * @return {string} instance name.
   */
  instanceOf(graph: AMRGraph, id: string): string

  /**
   * Finds the parents of a node.
   * @param {graph} AMRGraph, the graph.
   * @param {id} string, the id value of the node.
   * @param {predicate} stringOrRegExp, optional, relationship name.
   * @return {string[]} the parents.
   */
  parentsOf(graph: AMRGraph, id: string, predicate?: string | RegExp): string[]
  
  /**
   * Finds the childs of a node.
   * @param {graph} AMRGraph, the graph.
   * @param {id} string, the id value of the node.
   * @param {predicate} stringOrRegExp, optional, relationship name.
   * @param {ignoreInstance} boolean, if true, ignore instance child node.
   * @return {string[]} the childs.
   */
  childsOf(
    graph: AMRGraph,
    id: string,
    predicate?: string | RegExp,
    ignoreInstance?: boolean,
  ): string[]

  /**
   * Transforms a string into an array of words.
   * @param {input} string, text input.
   * @return {string[]} array of words.
   */
  tokenize(input: string): string[]

  /**
   * Transforms a string into an array of name leafs.
   * @param {input} string, text input.
   * @return {string[]} array with name leafs.
   */
  tokenizeName(input: string): string[] {
    return this.tokenize(input).map((p) => `\"${p}\"`);
  }

  /**
   * Create a list-type AMR node.
   * @param {ops} StringOrAMRGraph[], child nodes.
   * @param {instance} string, instance type, ex: "and", "or", "multi-sentence".
   * @param {rel} string, relation name, ex: ":op", ":sn".
   * @return {AMRGraph} a graph with the list node.
   */
  createListNode(
    ops: (string | AMRGraph)[],
    instance: string,
    rel: string,
  ): AMRGraph

  /**
   * Adds new elements to an existing list node.
   * @param {ops} StringOrAMRGraph[], child nodes.
   * @param {graph} AMRGraph, the graph.
   * @param {id} string, the id value of the list node, If empty, use the root node.
   * @param {rel} string, relation name, ex: ":op", ":sn", If empty,
   * check what type of relationship exists for its child nodes.
   */
  appendListNode(
    ops: (string | AMRGraph)[],
    graph: AMRGraph,
    id?: string,
    rel?: string,
  ): void
  
  /**
   * Returns possible reifications based on a semantic relationship.
   * @param {relation} string, relation name.
   * @return {stringOrRegExp[]} Possible reifications.
   */
  reificationFromRelation(relation: string): (string | RegExp)[]
  
  /**
   * Returns possible semantic relationships based on an reification instance type.
   * @param {instance} string, instance name.
   * @return {stringOrRegExp[]} Possible relations.
   */
  relationFromReification(instance: string): (string | RegExp)[]

There is also a collection of other simpler methods for manipulating AMR Graphs. All are documented in the code and are self explanatory.

Communicating with Python

You can create a python server to do deep learning processing and communicate with your application, see the example:

In python:

from http.server import HTTPServer, BaseHTTPRequestHandler
import json
import penman
import amrlib

stog = amrlib.load_stog_model('models/stog')
gtos = amrlib.load_gtos_model('models/gtos')

port = 41425

class NLPHandler(BaseHTTPRequestHandler):
    def do_POST(self):
        data_string = self.rfile.read(int(self.headers.get('content-length')))
        data = json.loads(data_string);
        res=None
        if "text" in data:
                res = penman.decode(stog.parse_sents([data["text"]])[0]).triples;
        elif "graph" in data:
                res, _ = gtos.generate([penman.encode(penman.Graph(data["graph"]), indent=None)])
                res = res[0]
        self.send_response(200)
        self.send_header('Content-Type', 'application/json; charset=utf-8')
        self.end_headers()
        self.wfile.write(json.dumps({"res":res}).encode('utf-8'))
        return
server_object = HTTPServer(server_address=('', port), RequestHandlerClass=NLPHandler)
print('starting NLP core at port: '+str(port))
server_object.serve_forever()

In application:

import {
  AMRGraph,
  AMRUtils,
} from "https://raw.githubusercontent.com/hviana/amr_utils/main/mod.ts";

export default class NLP {
  static utils = new AMRUtils();
  static url = "http://localhost:41425";
  static async #post(data: any): Promise<any> {
    return (await (await fetch(NLP.url, {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        "Accept": "application/json",
      },
      body: JSON.stringify(data),
    })).json()).res;
  }
  static async gen(graph: AMRGraph): Promise<string> {
    return await this.#post({ graph: NLP.utils.AMRGraphToTriples(graph) });
  }
  static async parse(text: string): Promise<AMRGraph> {
    return NLP.utils.triplesToAMRGraph(await this.#post({ text: text }));
  }
}

Bundle lib to any runtime or web browsers:

deno bundle https://raw.githubusercontent.com/hviana/amr_utils/main/mod.ts amr_utils.js

About

Author: Henrique Emanoel Viana, a Brazilian computer scientist, enthusiast of web technologies, cel: +55 (41) 99999-4664. URL: https://sites.google.com/view/henriqueviana

Improvements and suggestions are welcome!

About

Library for manipulating Abstract Meaning Representation (AMR) graphs

Resources

License

Stars

Watchers

Forks

Packages

No packages published