Tensorflow 2 튜토리얼 by BDM Lab (Bigdata Mining Lab in Hanyang Univ. ERICA) - 한국어
Authors: 이재영(Lee, Jaeyoung), 이웅희(Lee, Woonghee), 김종우(Kim, Jongwoo), 양재우(Yang, Jaewoo) 외
(리뉴얼 + 재구성 + 내용추가 작업중) (This repo is in renewal)
- Numpy
- Numpy Basic
- Numpy Operations 1
- Numpy Operations 2
- Numpy Broadcasting
- Linear Regression
- Principal Component Analysis
- Scipy Basic (planned)
- Logistic regression
- Basic Models
- Tensorflow Basic
- Fully Connected Networks (보완필요)
- Convolutional Neural Networks (코드추가완료, 설명미완성)
- Recurrent Neural Networks (설명추가필요 및 개선필요)
- Custom Models 1 (설명교체필요)
- Custom Models 2 (설명교체필요)
- Convolutional Neural Networks with Custom Model (코드추가완료, 설명미완성)
- Recurrent Neural Networks with Custom Model (planned)
- Style Transfer (planned)
- Auto Encoder
- Regularization for Auto Encoder (설명추가필요)
- Attention Mechanism
- Generative Models
- Restrict Boltzmann Machine
- Variational Auto Encoder
- Generative Adversarial Networks
- Deep Convolution GAN (코드추가완료, 설명미완성)
- Conditional GAN
- Info GAN (코드추가완료, 설명추가필요)
- LS GAN (planned)
- WGAN-GP (코드추가완료, 설명미완성)
- Progressive GAN
- Mixture Density Network
- Advanced Techniques
- Train on Multi GPUs
- Adversarial Attack & Defence
- FGSM
- DeepFool
- Reinforcement Learning
- Visualization
- Matplotlib 기본
- imageio 기초
- GradCAM
- GradCAM++
- Integrated Gradient
- Continual Learning
- ECW (Overcoming catastrophic forgetting in neural networks)
- Recommender Systems
- Matrix Factorization with Keras
- 최대한 line-by-line으로 설명하기
- 수정이 필요한 설명은 언제든 pull request!
- Tensorflow 공식 홈페이지: https://www.tensorflow.org/tutorials, https://www.tensorflow.org/guide