This repository contains python codes for paper, "End-to-End Learning for Omnidirectional Stereo Matching with Uncertainty Prior" (TPAMI).
Contact: Changhee Won (changhee.1.won@gmail.com)
- Pytorch (tested on 1.5.1)
pip install numpy scipy matplotlib pyyaml EasyDict scikit-image
- Pretrained weights:
- Set arguments in the script
- Run
python run_test_omnimvs.py [path_to_pt_file] [dbname]
You can download the synthetic datasets in the project page.
The directory structure should be like this:
[db_root]/[dbname]/[cam%d]/[%05d.png]
/omnidepth_gt_640/%05d.tiff # not necessary
/config.yaml
...
(e.g.)
data/sunny/
/cam1/
/cam2/
/cam3/
/cam4/
/omnidepth_gt_640/
/config.yaml
We founded a start-up company MultiplEYE co. ltd. based on this research.
@article{won2020end,
title={End-to-End Learning for Omnidirectional Stereo Matching with Uncertainty Prior},
author={Won, Changhee and Ryu, Jongbin and Lim, Jongwoo},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)},
year={2020},
}