Skip to content

hyunyongPark/StyleClassifier

Repository files navigation

Kfashion Style classifier - Multi Label classification

Reference

Model Description

EfficientNet Model Architecture Activation Map

Asymmetric Loss Description

Formula Comparison

Requirements

  • python V # python version : 3.8.13
  • dgl==0.9.1
  • tqdm
  • torch==1.9.1
  • torchvision==0.10.1
  • torchaudio==0.9.1
  • torchtext==0.10.1
  • dask
  • partd
  • pandas
  • fsspec==0.3.3
  • scipy
  • sklearn

cmd running

The install cmd is:

conda create -n your_prjname python=3.8
conda activate your_prjname
cd {Repo Directory}
pip install -r requirements.txt
  • your_prjname : Name of the virtual environment to create

If you want to proceed with the new training, adjust the parameters and set the directory and proceed with the command below.

The Training cmd is:


python3 style_train.py 

The testing cmd is:


python3 Inference_inspection_kfashiontest.py 

The inference cmd is:


python3 Inference.py 

Test Result

Testset Distribution
testset fashion category
  • Model Performance Table
test performance
Model Class Num Testset Num Top3 Recall
Global Convolutional Network 10 41,178 91.1%
EfficientNet 23 118,483 95.5%
Class Number Top3 Recall
preppy 1,218 89.8%
resort 29,757 94.0%
punk 389 91.9%
classic 14,809 91.4%
military 1,656 95.4%
sporty 6,710 94.4%
retro 3,512 93.5%
oriental 1,704 90.6%
country 13,792 93.1%
hiphop 1,254 88.0%
hippy 2,644 93.8%
avantgarde 1,576 89.8%
modern 31,242 93.6%
romantic 28,976 95.0%
manish 3,382 88.2%
genderless 6,003 92.8%
kitsch 2,858 90.6%
tomboy 3,921 88.7%
street 134,410 97.5%
feminine 34,652 93.9%
western 665 88.7%
sophisticated 11,960 91.9%
sexy 3,714 90.8%
  • Example

About

k-fashion style multi-label classification

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published