Generate synthetic signals for ML pipelines
To install: pip install hum
This notebook gathers various examples of the functionality of hum
:
- Synthetic datasets
- sound-like datasets
- diagnosis datasets
- signal generation
- Plotting and visualization
- plot
- display
- melspectrograms
- Infinite waveform from spectrums
- Various sample sounds
- Voiced time
from hum import (mk_sine_wf,
freq_based_stationary_wf,
BinarySound,
WfGen,
TimeSound,
mk_some_buzz_wf,
wf_with_timed_bleeps,
Sound,
plot_wf,
disp_wf,
InfiniteWaveform,
Voicer,
tell_time_continuously,
random_samples,
pure_tone,
triangular_tone,
square_tone,
AnnotatedWaveform,
gen_words,
categorical_gen,
bernoulli_gen,
create_session,
session_to_df
)
import matplotlib.pyplot as plt
from numpy.random import randint
import numpy as np
There are several different forms of synthetic data that hum
can produce to be used in machine learning pipelines, with the first being sound-like datasets generally in the form of sine waves
mk_sine_wf
provides an easy way to generate a simple waveform for synthetic testing purposes
DFLT_N_SAMPLES = 21 * 2048
DFLT_SR = 44100
wf = mk_sine_wf(freq=5, n_samples=DFLT_N_SAMPLES, sr=DFLT_SR, phase=0, gain=1)
plt.plot(wf);
wf = mk_sine_wf(freq=20, n_samples=DFLT_N_SAMPLES, sr=DFLT_SR, phase = 0.25, gain = 3)
plt.plot(wf);
freq_based_stationary_wf
provides the ability to generate a more complex waveform by mixing sine waves of different frequencies with potentially different weights
wf_mix = freq_based_stationary_wf(freqs=(2, 4, 6, 8), weights=None,
n_samples = DFLT_N_SAMPLES, sr = DFLT_SR)
plt.plot(wf_mix);
wf_mix = freq_based_stationary_wf(freqs=(2, 4, 6, 8), weights=(3,3,1,1),
n_samples = DFLT_N_SAMPLES, sr = DFLT_SR)
plt.plot(wf_mix);
WfGen
is a class that allows for the generation of sinusoidal waveforms, the generation of lookup tables to be used in generating waveforms, and frequency weighted mixed waveforms
wfgen = WfGen(sr=44100, buf_size_frm=2048, amplitude=0.5)
lookup = np.array(wfgen.mk_lookup_table(freq=880))
wf = wfgen.mk_sine_wf(n_frm=100, freq=880)
np.array(lookup).T
array([ 0. , 0.06252526, 0.12406892, 0.1836648 , 0.24037727,
0.293316 , 0.34164989, 0.38462013, 0.42155213, 0.45186607,
0.47508605, 0.49084754, 0.49890309, 0.49912624, 0.49151348,
0.47618432, 0.45337943, 0.42345682, 0.38688626, 0.34424188,
0.29619315, 0.24349441, 0.186973 , 0.12751624, 0.06605758,
0.00356187, -0.05898977, -0.12061531, -0.18034728, -0.23724793,
-0.29042397, -0.33904057, -0.38233448, -0.41962604, -0.45032977,
-0.47396367, -0.4901567 , -0.49865463, -0.49932406, -0.49215447,
-0.47725843, -0.45486979, -0.42534003, -0.38913276, -0.34681639,
-0.29905527, -0.2465992 , -0.19027171, -0.13095709, -0.06958655])
plt.plot(wf);
wf_weight = wfgen.mk_wf_from_freq_weight_array(n_frm=10000, freq_weight_array=(10,1,6))
plt.plot(wf_weight);
hum
can also produce diagnosis datasets to be applied to machine learning pipelines
BinarySound
is a class that generates binary waveforms
bs = BinarySound(nbits=50, redundancy=142, repetition=3, header_size_words=1)
utc = randint(0,2,50)
wf = bs.mk_phrase(utc)
plt.plot(wf[:200]);
all(bs.decode(wf) == utc)
True
BinarySound
can also be instantiated using audio parameters using the for_audio_params
class method
bs = BinarySound.for_audio_params(nbits=50, freq=6000, chk_size_frm=43008, sr=44100, header_size_words=1)
wf = bs.mk_phrase(utc)
plt.plot(wf[:200]);
all(bs.decode(wf) == utc)
True
utc phrases can be generated using mk_utc_phrases
when BinarySound
is instantiated with audio parameters
plt.plot(bs.mk_utc_phrases()[:200]);
TimeSound
is a class that generates timestamped waveform data
time = TimeSound(sr=44100, buf_size_frm=2048, amplitude=0.5, n_ums_bits=30)
wf = time.timestamped_wf()
plt.plot(wf[2000:2300]);
mk_some_buzz_wf
and wf_with_timed_bleeps
are two more options to generate synthetic data of diagnosis sounds
wf = mk_some_buzz_wf(sr=DFLT_SR)
plt.plot(wf[:500]);
wf = wf_with_timed_bleeps(n_samples=DFLT_SR*2, bleep_loc=400, bleep_spec=100, sr=DFLT_SR)
plt.plot(wf[:150]);
hum
can create signals generated by sequences of symbols, perturbed by outliers injected at given points
symb_res = categorical_gen(gen_words)
out_res = bernoulli_gen(p_out=0.01)
df = session_to_df(create_session(symb_res, out_res, alphabet=list('abcde'), session_length=500))
df.plot(subplots=True, figsize=(20,7));
hum
also provides several options for plotting and visualization for the synthetic datasets it generates
wfgen = WfGen()
wf = list()
for i in range(1, 1000, 20):
wf.extend(list(wfgen.mk_sine_wf(n_frm=2048, freq=i)))
wf = np.array(wf)
sr = 44100
plot_wf(wf[:20000], sr)
disp_wf(wf, sr)
snd = Sound(wf=wf, sr=sr)
snd.plot_wf(wf=wf[:20000], sr=sr)
snd.melspectrogram(plot_it=False)
array([[-63.34856485, -45.14910401, -36.14726097, ..., -80. ,
-73.35788085, -60.58728436],
[-67.99632241, -74.80503122, -80. , ..., -80. ,
-72.1600597 , -60.16803079],
[-80. , -80. , -80. , ..., -80. ,
-72.90050429, -60.90871386],
...,
[-80. , -80. , -80. , ..., -80. ,
-80. , -80. ],
[-80. , -80. , -80. , ..., -80. ,
-80. , -80. ],
[-80. , -80. , -80. , ..., -80. ,
-80. , -80. ]])
snd.display()
hum
also provides the functionality to create an infinite waveform based on a given spectrum, and a noise amplifier if desired
iwf = InfiniteWaveform(wf)
wf = list(iwf.query(0,500000))
disp_wf(wf)
Sound(wf=wf).display()
hum
also provides several functions to generate sample sounds shown below
wf = random_samples(chk_size_frm=21*2048, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()
wf = pure_tone(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()
/Users/owenlloyd/opt/anaconda3/envs/oto3/lib/python3.8/site-packages/matplotlib/axes/_axes.py:7723: RuntimeWarning: divide by zero encountered in log10
Z = 10. * np.log10(spec)
wf = triangular_tone(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()
wf = square_tone(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
disp_wf(wf=wf, sr=sr)
Sound(wf=wf).display()
awf = AnnotatedWaveform(chk_size_frm=21*2048, freq=440, sr=44100, max_amplitude=30000)
gen = awf.chk_and_tag_gen()
list(gen)
[(array([-14025, 11555, 22270, ..., 10243, -18225, 3874], dtype=int16),
'random'),
(array([ 0, 1902, 3797, ..., 9361, 11149, 12893], dtype=int16),
'pure_tone'),
(array([-30000, -29900, -29800, ..., 10500, 10600, 10700], dtype=int16),
'triangular_tone'),
(array([30000, 30000, 30000, ..., 30000, 30000, 30000], dtype=int16),
'square_tone')]
awf.get_wf_and_annots()
(array([ 5183, 10421, -21645, ..., 30000, 30000, 30000], dtype=int16),
{'random': [(0, 43008)],
'pure_tone': [(43008, 86016)],
'triangular_tone': [(86016, 129024)],
'square_tone': [(129024, 172032)]})
Finally hum
provides a function that will tell the time continuously with parameters for the frequency, speed, voice, volume, and time format
tell_time_continuously(every_secs=5, verbose=True)
15 45 11
15 45 16
15 45 21
15 45 26
KeyboardInterrupt!!!