The Algorand golang SDK provides:
- HTTP clients for the algod (agreement) and kmd (key management) APIs
- Standalone functionality for interacting with the Algorand protocol, including transaction signing, message encoding, etc.
Full documentation is available on godoc. You can also self-host the documentation by running godoc -http=:8099
and visiting http://localhost:8099/pkg/github.com/algorand/go-algorand-sdk
in your web browser.
Additional developer documentation can be found on developer.algorand.org
In client/
, the algod
and kmd
packages provide HTTP clients for their corresponding APIs. algod
is the Algorand protocol daemon, responsible for reaching consensus with the network and participating in the Algorand protocol. You can use it to check the status of the blockchain, read a block, look at transactions, or submit a signed transaction. kmd
is the key management daemon. It is responsible for managing spending key material, signing transactions, and managing wallets.
types
contains the data structures you'll use when interacting with the network, including addresses, transactions, multisig signatures, etc. Some types (like Transaction
) have their own packages containing constructors (like MakePaymentTxn
).
encoding
contains the json
and msgpack
packages, which can be used to serialize messages for the algod/kmd APIs and the network.
mnemonic
contains support for turning 32-byte keys into checksummed, human-readable mnemonics (and going from mnemonics back to keys).
Run tests with make docker-test
To download the SDK, open a terminal and use the go get
command.
go get -u github.com/algorand/go-algorand-sdk/...
If you are connected to the Algorand network, your algod process should already be running. The kmd process must be started manually, however. Start and stop kmd using goal kmd start
and goal kmd stop
:
goal kmd start -d <your-data-directory>
Here's a simple example which creates clients for algod and kmd:
package main
import (
"fmt"
"github.com/algorand/go-algorand-sdk/client/v2/algod"
"github.com/algorand/go-algorand-sdk/client/kmd"
)
var (
algodAddress = "http://localhost:4001"
algodToken = strings.Repeat("a", 64) // contents of algod.token
kmdAddress = "http://localhost:4002"
kmdToken = strings.Repeat("a", 64)// contents of kmd.token
)
func main() {
// Create an algod client
algodClient, err := algod.MakeClient(algodAddress, algodToken)
if err != nil {
return
}
// Create a kmd client
kmdClient, err := kmd.MakeClient(kmdAddress, kmdToken)
if err != nil {
return
}
fmt.Printf("algod: %T, kmd: %T\n", algodClient, kmdClient)
}
make build
The build process includes generating some files. Refer to Makefile
for details.
Here is an example that creates an algod client and uses it to fetch node status information, and then a specific block.
package main
import (
"encoding/json"
"fmt"
"github.com/algorand/go-algorand-sdk/client/v2/algod"
)
// These constants represent the algod REST endpoint and the corresponding
// API token. You can retrieve these from the `algod.net` and `algod.token`
// files in the algod data directory.
var (
algodAddress = "http://localhost:4001"
algodToken = strings.Repeat("a", 64)
)
func main() {
// Create an algod client
algodClient, err := algod.MakeClient(algodAddress, algodToken)
if err != nil {
fmt.Printf("failed to make algod client: %s\n", err)
return
}
// Print algod status
nodeStatus, err := algodClient.Status().Do(context.Background())
if err != nil {
fmt.Printf("error getting algod status: %s\n", err)
return
}
fmt.Printf("algod last round: %d\n", nodeStatus.LastRound)
fmt.Printf("algod time since last round: %d\n", nodeStatus.TimeSinceLastRound)
fmt.Printf("algod catchup: %d\n", nodeStatus.CatchupTime)
fmt.Printf("algod latest version: %s\n", nodeStatus.LastVersion)
// Fetch block information
lastBlock, err := algodClient.Block(nodeStatus.LastRound).Do(context.Background())
if err != nil {
fmt.Printf("error getting last block: %s\n", err)
return
}
// Print the block information
fmt.Printf("\n-----------------Block Information-------------------\n")
blockJSON, err := json.MarshalIndent(lastBlock, "", "\t")
if err != nil {
fmt.Printf("Can not marshall block data: %s\n", err)
}
fmt.Printf("%s\n", blockJSON)
}
The following example creates a wallet, and generates an account within that wallet.
package main
import (
"fmt"
"github.com/algorand/go-algorand-sdk/client/kmd"
"github.com/algorand/go-algorand-sdk/types"
)
// These constants represent the kmdd REST endpoint and the corresponding API
// token. You can retrieve these from the `kmd.net` and `kmd.token` files in
// the kmd data directory.
var (
kmdAddress = "http://localhost:4002"
kmdToken = strings.Repeat("a", 64)
)
func main() {
// Create a kmd client
kmdClient, err := kmd.MakeClient(kmdAddress, kmdToken)
if err != nil {
fmt.Printf("failed to make kmd client: %s\n", err)
return
}
fmt.Println("Made a kmd client")
// Create the example wallet, if it doesn't already exist
cwResponse, err := kmdClient.CreateWallet("testwallet", "testpassword", kmd.DefaultWalletDriver, types.MasterDerivationKey{})
if err != nil {
fmt.Printf("error creating wallet: %s\n", err)
return
}
// We need the wallet ID in order to get a wallet handle, so we can add accounts
exampleWalletID := cwResponse.Wallet.ID
fmt.Printf("Created wallet '%s' with ID: %s\n", cwResponse.Wallet.Name, exampleWalletID)
// Get a wallet handle. The wallet handle is used for things like signing transactions
// and creating accounts. Wallet handles do expire, but they can be renewed
initResponse, err := kmdClient.InitWalletHandle(exampleWalletID, "testpassword")
if err != nil {
fmt.Printf("Error initializing wallet handle: %s\n", err)
return
}
// Extract the wallet handle
exampleWalletHandleToken := initResponse.WalletHandleToken
// Generate a new address from the wallet handle
genResponse, err := kmdClient.GenerateKey(exampleWalletHandleToken)
if err != nil {
fmt.Printf("Error generating key: %s\n", err)
return
}
fmt.Printf("Generated address %s\n", genResponse.Address)
}
This account can now be used to sign transactions, but you will need some funds to get started. If you are on the test network, you can use the dispenser to seed your account with some Algos.
You can export a master derivation key from the wallet and convert it to a mnemonic phrase in order to back up any generated addresses. This backup phrase will only allow you to recover wallet-generated keys; if you import an external key into a kmd-managed wallet, you'll need to back up that key by itself in order to recover it.
package main
import (
"fmt"
"github.com/algorand/go-algorand-sdk/client/kmd"
"github.com/algorand/go-algorand-sdk/mnemonic"
)
// These constants represent the kmd REST endpoint and the corresponding API
// token. You can retrieve these from the `kmd.net` and `kmd.token` files in
// the kmd data directory.
var (
kmdAddress = "http://localhost:4002"
kmdToken = strings.Repeat("a",64)
)
func main() {
// Create a kmd client
kmdClient, err := kmd.MakeClient(kmdAddress, kmdToken)
if err != nil {
fmt.Printf("failed to make kmd client: %s\n", err)
return
}
fmt.Println("Made a kmd client")
// Get the list of wallets
listResponse, err := kmdClient.ListWallets()
if err != nil {
fmt.Printf("error listing wallets: %s\n", err)
return
}
// Find our wallet name in the list
var exampleWalletID string
fmt.Printf("Got %d wallet(s):\n", len(listResponse.Wallets))
for _, wallet := range listResponse.Wallets {
fmt.Printf("ID: %s\tName: %s\n", wallet.ID, wallet.Name)
if wallet.Name == "testwallet" {
fmt.Printf("found wallet '%s' with ID: %s\n", wallet.Name, wallet.ID)
exampleWalletID = wallet.ID
}
}
// Get a wallet handle
initResponse, err := kmdClient.InitWalletHandle(exampleWalletID, "testpassword")
if err != nil {
fmt.Printf("Error initializing wallet handle: %s\n", err)
return
}
// Extract the wallet handle
exampleWalletHandleToken := initResponse.WalletHandleToken
// Get the backup phrase
exportResponse, err := kmdClient.ExportMasterDerivationKey(exampleWalletHandleToken, "testpassword")
if err != nil {
fmt.Printf("Error exporting backup phrase: %s\n", err)
return
}
mdk := exportResponse.MasterDerivationKey
// This string should be kept in a safe place and not shared
stringToSave, err := mnemonic.FromKey(mdk[:])
if err != nil {
fmt.Printf("Error getting backup phrase: %s\n", err)
return
}
fmt.Printf("Backup Phrase: %s\n", stringToSave)
}
To restore a wallet, convert the phrase to a key and pass it to CreateWallet
. This call will fail if the wallet already exists:
package main
import (
"fmt"
"github.com/algorand/go-algorand-sdk/client/kmd"
"github.com/algorand/go-algorand-sdk/mnemonic"
"github.com/algorand/go-algorand-sdk/types"
)
// These constants represent the kmd REST endpoint and the corresponding API
// token. You can retrieve these from the `kmd.net` and `kmd.token` files in
// the kmd data directory.
var (
kmdAddress = "http://localhost:4002"
kmdToken = strings.Repeat("a", 4001)
)
func main() {
// Create a kmd client
kmdClient, err := kmd.MakeClient(kmdAddress, kmdToken)
if err != nil {
fmt.Printf("failed to make kmd client: %s\n", err)
return
}
backupPhrase := "fire enlist diesel stamp nuclear chunk student stumble call snow flock brush example slab guide choice option recall south kangaroo hundred matrix school above zero"
keyBytes, err := mnemonic.ToKey(backupPhrase)
if err != nil {
fmt.Printf("failed to get key: %s\n", err)
return
}
var mdk types.MasterDerivationKey
copy(mdk[:], keyBytes)
cwResponse, err := kmdClient.CreateWallet("testwallet", "testpassword", kmd.DefaultWalletDriver, mdk)
if err != nil {
fmt.Printf("error creating wallet: %s\n", err)
return
}
fmt.Printf("Created wallet '%s' with ID: %s\n", cwResponse.Wallet.Name, cwResponse.Wallet.ID)
}
The following example shows how to to use both KMD and Algod when signing and submitting a transaction. You can also sign a transaction offline, which is shown in the next section of this document.
package main
import (
"fmt"
"github.com/algorand/go-algorand-sdk/client/v2/algod"
"github.com/algorand/go-algorand-sdk/client/kmd"
"github.com/algorand/go-algorand-sdk/transaction"
)
// CHANGE ME
var (
algodAddress = "http://localhost:4001"
algodToken = strings.Repeat("a", 64)
kmdAddress = "http://localhost:4002"
kmdToken = strings.Repeat("a", 64)
)
func main() {
// Create a kmd client
kmdClient, err := kmd.MakeClient(kmdAddress, kmdToken)
if err != nil {
fmt.Printf("failed to make kmd client: %s\n", err)
return
}
fmt.Println("Made a kmd client")
// Create an algod client
algodClient, err := algod.MakeClient(algodAddress, algodToken)
if err != nil {
fmt.Printf("failed to make algod client: %s\n", err)
return
}
fmt.Println("Made an algod client")
// Get the list of wallets
listResponse, err := kmdClient.ListWallets()
if err != nil {
fmt.Printf("error listing wallets: %s\n", err)
return
}
// Find our wallet name in the list
var exampleWalletID string
fmt.Printf("Got %d wallet(s):\n", len(listResponse.Wallets))
for _, wallet := range listResponse.Wallets {
fmt.Printf("ID: %s\tName: %s\n", wallet.ID, wallet.Name)
if wallet.Name == "testwallet" {
fmt.Printf("found wallet '%s' with ID: %s\n", wallet.Name, wallet.ID)
exampleWalletID = wallet.ID
break
}
}
// Get a wallet handle
initResponse, err := kmdClient.InitWalletHandle(exampleWalletID, "testpassword")
if err != nil {
fmt.Printf("Error initializing wallet handle: %s\n", err)
return
}
// Extract the wallet handle
exampleWalletHandleToken := initResponse.WalletHandleToken
// Generate a new address from the wallet handle
gen1Response, err := kmdClient.GenerateKey(exampleWalletHandleToken)
if err != nil {
fmt.Printf("Error generating key: %s\n", err)
return
}
fmt.Printf("Generated address 1 %s\n", gen1Response.Address)
fromAddr := gen1Response.Address
// Generate a new address from the wallet handle
gen2Response, err := kmdClient.GenerateKey(exampleWalletHandleToken)
if err != nil {
fmt.Printf("Error generating key: %s\n", err)
return
}
fmt.Printf("Generated address 2 %s\n", gen2Response.Address)
toAddr := gen2Response.Address
// Get the suggested transaction parameters
txParams, err := algodClient.SuggestedParams().Do(context.Background())
if err != nil {
fmt.Printf("error getting suggested tx params: %s\n", err)
return
}
// Make transaction
tx, err := future.MakePaymentTxn(fromAddr, toAddr, 1000, nil, "", txParams)
if err != nil {
fmt.Printf("Error creating transaction: %s\n", err)
return
}
// Sign the transaction
signResponse, err := kmdClient.SignTransaction(exampleWalletHandleToken, "testpassword", tx)
if err != nil {
fmt.Printf("Failed to sign transaction with kmd: %s\n", err)
return
}
fmt.Printf("kmd made signed transaction with bytes: %x\n", signResponse.SignedTransaction)
// Broadcast the transaction to the network
// Note that this transaction will get rejected because the accounts do not have any tokens
sendResponse, err := algodClient.SendRawTransaction(signResponse.SignedTransaction).Do(context.Background())
if err != nil {
fmt.Printf("failed to send transaction: %s\n", err)
return
}
fmt.Printf("Transaction ID: %s\n", sendResponse.TxID)
}
The following example shows how to create a transaction and sign it offline. You can also create the transaction online and then sign it offline.
package main
import (
"fmt"
"io/ioutil"
"github.com/algorand/go-algorand-sdk/crypto"
"github.com/algorand/go-algorand-sdk/mnemonic"
"github.com/algorand/go-algorand-sdk/transaction"
"github.com/algorand/go-algorand-sdk/types"
)
func main() {
account := crypto.GenerateAccount()
fmt.Printf("account address: %s\n", account.Address)
m, err := mnemonic.FromPrivateKey(account.PrivateKey)
fmt.Printf("backup phrase = %s\n", m)
// Create and sign a sample transaction using this library, *not* kmd
// This transaction will not be valid as the example parameters will most likely not be valid
// You can use the algod client to get suggested values for the fee, first and last rounds, and genesisID
const fee = 1000
const amount = 20000
const firstRound = 642715
const lastRound = firstRound + 1000
params := types.SuggestedParams {
Fee: types.MicroAlgos(fee),
FirstRoundValid: firstRound,
LastRoundValid: lastRound,
GenesisHash: []byte("JgsgCaCTqIaLeVhyL6XlRu3n7Rfk2FxMeK+wRSaQ7dI="),
}
tx, err := future.MakePaymentTxn(
account.Address.String(), "4MYUHDWHWXAKA5KA7U5PEN646VYUANBFXVJNONBK3TIMHEMWMD4UBOJBI4",
amount, nil, "", params
)
if err != nil {
fmt.Printf("Error creating transaction: %s\n", err)
return
}
fmt.Printf("Made unsigned transaction: %+v\n", tx)
fmt.Println("Signing transaction with go-algo-sdk library function (not kmd)")
// Sign the Transaction
txid, bytes, err := crypto.SignTransaction(account.PrivateKey, tx)
if err != nil {
fmt.Printf("Failed to sign transaction: %s\n", err)
return
}
// Save the signed object to disk
fmt.Printf("Made signed transaction with TxID %s\n", txid)
filename := "./signed.tx"
err = ioutil.WriteFile(filename, bytes, 0644)
if err != nil {
fmt.Printf("Failed in saving transaction to file %s, error %s\n", filename, err)
return
}
fmt.Printf("Saved signed transaction to file: %s\n", filename)
}
This example takes the output from the previous example (file containing signed transaction) and submits it to Algod process of a node.
package main
import (
"fmt"
"io/ioutil"
"github.com/algorand/go-algorand-sdk/client/v2/algod"
)
// CHANGE ME
var (
algodAddress = "http://localhost:4001"
algodToken = strings.Repeat("a", 64)
)
func main() {
rawTx, err := ioutil.ReadFile("./signed.tx")
if err != nil {
fmt.Printf("failed to open signed transaction: %s\n", err)
return
}
// Create an algod client
algodClient, err := algod.MakeClient(algodAddress, algodToken)
if err != nil {
fmt.Printf("failed to make algod client: %s\n", err)
return
}
// Broadcast the transaction to the network
sendResponse, err := algodClient.SendRawTransaction(rawTx).Do(context.Background())
if err != nil {
fmt.Printf("failed to send transaction: %s\n", err)
return
}
fmt.Printf("Transaction ID: %s\n", sendResponse.TxID)
}
Here, we first create a simple multisig payment transaction, with three public identities and a threshold of 2:
addr1, _ := types.DecodeAddress("DN7MBMCL5JQ3PFUQS7TMX5AH4EEKOBJVDUF4TCV6WERATKFLQF4MQUPZTA")
addr2, _ := types.DecodeAddress("BFRTECKTOOE7A5LHCF3TTEOH2A7BW46IYT2SX5VP6ANKEXHZYJY77SJTVM")
addr3, _ := types.DecodeAddress("47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU")
ma, err := crypto.MultisigAccountWithParams(1, 2, []types.Address{
addr1,
addr2,
addr3,
})
if err != nil {
panic("invalid multisig parameters")
}
fromAddr, _ := ma.Address()
params := types.SuggestedParams {
Fee: types.MicroAlgos(fee), // fee per byte, unless FlatFee is true
FlatFee: false,
FirstRoundValid: types.Round(100000),
LastRoundValid: types.Round(101000),
GenesisHash: []byte, // cannot be empty in practice
}
txn, err := future.MakePaymentTxn(
fromAddr.String(),
"INSERTTOADDRESHERE",
10000, // amount
nil, // note
"", // closeRemainderTo
params
)
txid, txBytes, err := crypto.SignMultisigTransaction(secretKey, ma, txn)
if err != nil {
panic("could not sign multisig transaction")
}
fmt.Printf("Made partially-signed multisig transaction with TxID %s: %x\n", txid, txBytes)
Now, we can write the returned bytes to disk:
_ := ioutil.WriteFile("./arbitrary_file.tx", txBytes, 0644)
And read them back in:
readTxBytes, _ := ioutil.ReadFile("./arbitrary_file.tx")
Now, we can append another signature, to hit the threshold. Note that this SDK forces new signers to know the parameters of the multisig - after all, we don't want to sign things without knowing the identity of the multi-signature.
// as before
addr1, _ := types.DecodeAddress("DN7MBMCL5JQ3PFUQS7TMX5AH4EEKOBJVDUF4TCV6WERATKFLQF4MQUPZTA")
addr2, _ := types.DecodeAddress("BFRTECKTOOE7A5LHCF3TTEOH2A7BW46IYT2SX5VP6ANKEXHZYJY77SJTVM")
addr3, _ := types.DecodeAddress("47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU")
ma, _ := crypto.MultisigAccountWithParams(1, 2, []types.Address{
addr1,
addr2,
addr3,
})
// append our signature to readTxBytes
txid, twoOfThreeTxBytes, err := crypto.AppendMultisigTransaction(secretKey, ma, readTxBytes)
if err != nil {
panic("could not append signature to multisig transaction")
}
fmt.Printf("Made 2-out-of-3 multisig transaction with TxID %s: %x\n", txid, twoOfThreeTxBytes)
We can also merge raw, partially-signed multisig transactions:
otherTxBytes := ... // generate another raw multisig transaction somehow
txid, mergedTxBytes, err := crypto.MergeMultisigTransactions(twoOfThreeTxBytes, otherTxBytes)
Example below demonstrates how to create a transactions group and send it to network.
package main
import (
"fmt"
"github.com/algorand/go-algorand-sdk/client/v2/algod"
"github.com/algorand/go-algorand-sdk/crypto"
"github.com/algorand/go-algorand-sdk/transaction"
"github.com/algorand/go-algorand-sdk/types"
)
// CHANGE ME
var (
algodAddress = "http://localhost:4001"
algodToken = strings.Repeat("a", 64)
)
func submitGroup() {
account1 := crypto.GenerateAccount()
fmt.Printf("account address: %s\n", account1.Address)
account2 := crypto.GenerateAccount()
fmt.Printf("account address: %s\n", account2.Address)
address1 := account1.Address.String()
address2 := account2.Address.String()
const address3 = "47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU"
const fee = 1000
const amount1 = 2000
var note []byte
const genesisID = "XYZ" // replace me
genesisHash := []byte("ABC") // replace me
const firstRound1 = 710399
params := types.SuggestedParams {
Fee: types.MicroAlgos(fee),
FlatFee: true,
FirstRoundValid: types.Round(firstRound1),
LastRoundValid: types.Round(firstRound1+1000),
GenesisHash: genesisHash,
GenesisID: genesisID,
}
tx1, err := future.MakePaymentTxn(
address1, address2, amount1,
note, "", params
)
if err != nil {
fmt.Printf("Failed to create payment transaction: %v\n", err)
return
}
const firstRound2 = 710515
params.FirstRoundValid = types.Round(firstRound2)
params.LastRoundValid = types.Round(firstRound2 + 1000)
const amount2 = 1500
tx2, err := future.MakePaymentTxn(
address2, address3, amount2,
note, "", params
)
if err != nil {
fmt.Printf("Failed to create payment transaction: %v\n", err)
return
}
// compute group id and put it into each transaction
gid, err := crypto.ComputeGroupID([]types.Transaction{tx1, tx2})
tx1.Group = gid
tx2.Group = gid
algodClient, err := algod.MakeClient(algodAddress, algodToken)
if err != nil {
fmt.Printf("failed to make algod client: %v\n", err)
return
}
_, stx1, err := crypto.SignTransaction(account1.PrivateKey, tx1)
if err != nil {
fmt.Printf("Failed to sign transaction: %s\n", err)
return
}
_, stx2, err := crypto.SignTransaction(account2.PrivateKey, tx2)
if err != nil {
fmt.Printf("Failed to sign transaction: %s\n", err)
return
}
var signedGroup []byte
signedGroup = append(signedGroup, stx1...)
signedGroup = append(signedGroup, stx2...)
_, err = algodClient.SendRawTransaction(signedGroup).Do(context.Background())
if err != nil {
fmt.Printf("Failed to create payment transaction: %v\n", err)
return
}
}
Example creates a delegating LogicSig signature signed by a MultiSig account.
A program is "int 0" that is evaluates to FALSE
and does not actually permits the transaction.
package main
import (
"fmt"
"github.com/algorand/go-algorand-sdk/client/v2/algod"
"github.com/algorand/go-algorand-sdk/crypto"
"github.com/algorand/go-algorand-sdk/mnemonic"
"github.com/algorand/go-algorand-sdk/transaction"
"github.com/algorand/go-algorand-sdk/types"
)
// CHANGE ME
var (
algodAddress = "http://localhost:4001"
algodToken = strings.Repeat("a", 64)
)
func main() {
// ignore error checking for readability
addr1, _ := types.DecodeAddress("DN7MBMCL5JQ3PFUQS7TMX5AH4EEKOBJVDUF4TCV6WERATKFLQF4MQUPZTA")
addr2, _ := types.DecodeAddress("BFRTECKTOOE7A5LHCF3TTEOH2A7BW46IYT2SX5VP6ANKEXHZYJY77SJTVM")
mn1 := "auction inquiry lava second expand liberty glass involve ginger illness length room item discover ahead table doctor term tackle cement bonus profit right above catch"
sk1, _ := mnemonic.ToPrivateKey(mn1)
mn2 := "since during average anxiety protect cherry club long lawsuit loan expand embark forum theory winter park twenty ball kangaroo cram burst board host ability left"
sk2, _ := mnemonic.ToPrivateKey(mn2)
ma, _ := crypto.MultisigAccountWithParams(1, 2, []types.Address{
addr1,
addr2,
})
program := []byte{1, 32, 1, 0, 34} // int 0 => never transfer money
var args [][]byte
lsig, _ := crypto.MakeLogicSig(program, args, sk1, ma)
_ = crypto.AppendMultisigToLogicSig(&lsig, sk2)
sender, _ := ma.Address()
_ = crypto.VerifyLogicSig(lsig, sender)
const receiver = "47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU"
const fee = 1000
const amount = 2000
var note []byte
const genesisID = "XYZ" // replace me
genesisHash := []byte("ABC") // replace me
const firstRound = 710399
params := types.SuggestedParams {
Fee: types.MicroAlgos(fee),
FlatFee: true,
FirstRoundValid: types.Round(firstRound),
LastRoundValid: types.Round(firstRound+1000),
GenesisHash: genesisHash,
GenesisID: genesisID,
}
tx, _ := future.MakePaymentTxn(
sender.String(), receiver, amount,
note, "", params
)
txid, stx, err := crypto.SignLogicsigTransaction(lsig, tx)
if err != nil {
fmt.Printf("Signing failed with %v", err)
return
}
fmt.Printf("Signed tx: %v\n", txid)
algodClient, _ := algod.MakeClient(algodAddress, algodToken)
_, err = algodClient.SendRawTransaction(stx).Do(context.Background())
if err != nil {
fmt.Printf("Sending failed with %v\n", err)
}
}
The Algorand protocol allows users to create and trade named assets on layer one. Creating and managing these assets is done through the issuing of asset transactions. This section details how to make asset transactions, and what they do.
Asset creation: This allows a user to issue a new asset. The user can define the number of assets in circulation, whether there is an account that can revoke assets, whether there is an account that can freeze user accounts, whether there is an account that can be considered the asset reserve, and whether there is an account that can change the other accounts. The creating user can also do things like specify a name for the asset.
addr := "BH55E5RMBD4GYWXGX5W5PJ5JAHPGM5OXKDQH5DC4O2MGI7NW4H6VOE4CP4" // the account issuing the transaction; the asset creator
fee := types.MicroAlgos(10) // the number of microAlgos per byte to pay as a transaction fee
defaultFrozen := false // whether user accounts will need to be unfrozen before transacting
genesisHash, _ := base64.StdEncoding.DecodeString("SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=") // hash of the genesis block of the network to be used
totalIssuance := uint64(100) // total number of this asset in circulation
decimals := uint64(1) // hint to GUIs for interpreting base unit
reserve := addr // specified address is considered the asset reserve (it has no special privileges, this is only informational)
freeze := addr // specified address can freeze or unfreeze user asset holdings
clawback := addr // specified address can revoke user asset holdings and send them to other addresses
manager := addr // specified address can change reserve, freeze, clawback, and manager
unitName := "tst" // used to display asset units to user
assetName := "testcoin" // "friendly name" of asset
genesisID := "" // like genesisHash this is used to specify network to be used
firstRound := types.Round(322575) // first Algorand round on which this transaction is valid
lastRound := types.Round(322575) // last Algorand round on which this transaction is valid
note := nil // arbitrary data to be stored in the transaction; here, none is stored
assetURL := "http://someurl" // optional string pointing to a URL relating to the asset
assetMetadataHash := "thisIsSomeLength32HashCommitment" // optional hash commitment of some sort relating to the asset. 32 character length.
params := types.SuggestedParams {
Fee: fee,
FirstRoundValid: firstRound,
LastRoundValid: lastRound,
GenesisHash: genesisHash,
GenesisID: genesisID,
}
// signing and sending "txn" allows "addr" to create an asset
txn, err = MakeAssetCreateTxn(addr, note, params,
totalIssuance, decimals, defaultFrozen, manager, reserve, freeze, clawback,
unitName, assetName, assetURL, assetMetadataHash)
Asset reconfiguration: This allows the address specified as manager
to change any of the special addresses for the asset,
such as the reserve address. To keep an address the same, it must be re-specified in each new configuration transaction.
Supplying an empty address is the same as turning the associated feature off for this asset. Once a special address
is set to the empty address, it can never change again. For example, if an asset configuration transaction specifying
clawback=""
were issued, the associated asset could never be revoked from asset holders, and clawback=""
would be
true for all time. The strictEmptyAddressChecking
argument can help guard against this, it causes
MakeAssetConfigTxn
return error if any management address is set to empty.
addr := "BH55E5RMBD4GYWXGX5W5PJ5JAHPGM5OXKDQH5DC4O2MGI7NW4H6VOE4CP4"
fee := types.MicroAlgos(10)
firstRound := types.Round(322575)
lastRound := types.Round(322575)
note := nil
genesisID := ""
genesisHash, _ := base64.StdEncoding.DecodeString("SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=")
assetIndex := uint64(1234)
reserve := addr
freeze := addr
clawback := addr
manager := addr
strictEmptyAddressChecking := true
params := types.SuggestedParams {
Fee: fee,
FirstRoundValid: firstRound,
LastRoundValid: lastRound,
GenesisHash: genesisHash,
GenesisID: genesisID,
}
// signing and sending "txn" will allow the asset manager to change:
// asset manager, asset reserve, asset freeze manager, asset revocation manager
txn, err = MakeAssetConfigTxn(addr, note, params,
assetIndex, manager, reserve, freeze, clawback, strictEmptyAddressChecking)
Asset destruction: This allows the creator to remove the asset from the ledger, if all outstanding assets are held by the creator.
addr := "BH55E5RMBD4GYWXGX5W5PJ5JAHPGM5OXKDQH5DC4O2MGI7NW4H6VOE4CP4"
fee := types.MicroAlgos(10)
firstRound := types.Round(322575)
lastRound := types.Round(322575)
note := nil
genesisID := ""
genesisHash, _ := base64.StdEncoding.DecodeString("SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=")
assetIndex := uint64(1234)
params := types.SuggestedParams {
Fee: fee,
FirstRoundValid: firstRound,
LastRoundValid: lastRound,
GenesisHash: genesisHash,
GenesisID: genesisID,
}
// if all outstanding assets are held by the asset creator,
// the asset creator can sign and issue "txn" to remove the asset from the ledger.
txn, err = MakeAssetDestroyTxn(addr, note, params, assetIndex)
Begin accepting an asset: Before a user can begin transacting with an asset, the user must first issue an asset acceptance transaction. This is a special case of the asset transfer transaction, where the user sends 0 assets to themself. After issuing this transaction, the user can begin transacting with the asset. Each new accepted asset increases the user's minimum balance.
addr := "BH55E5RMBD4GYWXGX5W5PJ5JAHPGM5OXKDQH5DC4O2MGI7NW4H6VOE4CP4"
fee := types.MicroAlgos(10)
firstRound := types.Round(322575)
lastRound := types.Round(322575)
note := nil
genesisID := ""
genesisHash, _ := base64.StdEncoding.DecodeString("SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=")
assetIndex := uint64(1234)
params := types.SuggestedParams {
Fee: fee,
FirstRoundValid: firstRound,
LastRoundValid: lastRound,
GenesisHash: genesisHash,
GenesisID: genesisID,
}
// signing and sending "txn" allows sender to begin accepting asset specified by creator and index
txn, err = MakeAssetAcceptanceTxn(addr, note, params, assetIndex)
Transfer an asset: This allows users to transact with assets, after they have issued asset acceptance transactions. The
optional closeRemainderTo
argument can be used to stop transacting with a particular asset. Note: A frozen account can always close
out to the asset creator.
addr := "BH55E5RMBD4GYWXGX5W5PJ5JAHPGM5OXKDQH5DC4O2MGI7NW4H6VOE4CP4"
sender := addr
recipient := "47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU"
closeRemainderTo := "" // supply an address to close remaining balance after transfer to supplied address
fee := types.MicroAlgos(10)
firstRound := types.Round(322575)
lastRound := types.Round(322575)
note := nil
genesisID := ""
genesisHash, _ := base64.StdEncoding.DecodeString("SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=")
assetIndex := uint64(1234)
amount := uint64(10)
params := types.SuggestedParams {
Fee: fee,
FirstRoundValid: firstRound,
LastRoundValid: lastRound,
GenesisHash: genesisHash,
GenesisID: genesisID,
}
// signing and sending "txn" will send "amount" assets from "sender" to "recipient"
txn, err = MakeAssetTransferTxn(sender, recipient, amount, note, params, closeRemainderTo, assetIndex);
Revoke an asset: This allows an asset's revocation manager to transfer assets on behalf of another user. It will only work when issued by the asset's revocation manager.
revocationManager := "BH55E5RMBD4GYWXGX5W5PJ5JAHPGM5OXKDQH5DC4O2MGI7NW4H6VOE4CP4" // txn signed by this address
recipient := "47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU" // assets sent to this address
revocationTarget := "47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU" // assets come from this address
fee := types.MicroAlgos(10)
firstRound := types.Round(322575)
lastRound := types.Round(322575)
note := nil
genesisID := ""
genesisHash, _ := base64.StdEncoding.DecodeString("SGO1GKSzyE7IEPItTxCByw9x8FmnrCDexi9/cOUJOiI=")
assetIndex := uint64(1234)
amount := uint64(10)
params := types.SuggestedParams {
Fee: fee,
FirstRoundValid: firstRound,
LastRoundValid: lastRound,
GenesisHash: genesisHash,
GenesisID: genesisID,
}
// signing and sending "txn" will send "amount" assets from "revocationTarget" to "recipient",
// if and only if sender == clawback manager for this asset
txn, err = MakeAssetRevocationTxn(revocationManager, revocationTarget, amount, recipient, note, params, assetIndex);
To rekey an account to a new address, simply call the Rekey
function on any transaction.
...
tx, err := future.MakePaymentTxn(
account.Address.String(), "4MYUHDWHWXAKA5KA7U5PEN646VYUANBFXVJNONBK3TIMHEMWMD4UBOJBI4",
amount, nil, "", params
)
// From now, every transaction needs to be signed by the SK of the following address
tx.Rekey("47YPQTIGQEO7T4Y4RWDYWEKV6RTR2UNBQXBABEEGM72ESWDQNCQ52OPASU")
...
When submitting a transaction from an account that was rekeying, simply use relevant SK. SignTransaction
will detect
that the SK corresponding address is different than the sender's and will set the AuthAddr
accordingly.