Skip to content

Prediction of anti-breast cancer active molecules.

Notifications You must be signed in to change notification settings

idrugLab/ChemBC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Usage of ChemBC

A. Configuration preparation:

​ 1. rdkit

​ 2. deepchem

​ 3. sklearn

​ 4. tensorflow

B. Instructions:

​ 1.File selection parameters, the file format refers to the sample format (D part).

--files xx.csv

​ 2.Cell line selection parameters, select the cell line model provided by the application for prediction. (Bcap37, BT-20, BT-474, BT-549, HS-578T, MCF-7, MDA-MB-231, MDA-MB-361, MDA-MB-435, MDA-MB-453, MDA-MB-468, SK-BR-3, T-47D, and HBL-100)

--files xx.csv

​ 3.All cell line parameters are selected. If this option is selected, there is no need to select the system parameter.

--all_system True

​ 4. When using chembc.py, you need to decompress models.zip

​ 5. After the application is started, the corresponding scoring file will be automatically generated under the current path, in the format of csv.

C. Examples:

​ 1. Select a single cell line:

	python ChemBC.py --files MCF-7.csv  --system HS-578T

​ 2. Select all cell lines:

	python ChemBC.py --files MCF-7.csv  --all_system True

D. The format of the input file:

​ 1. The format of the input file should be csv.

​ 2. In the input file, the contents are as follows:

Smiles
O=C1CC[C@]2(C@@HC1(C)C)C
O=C1CC[C@]2(C@@HC1(C)C)C
O=C1CC[C@]2(C@@HC1(C)C)C
O=C1CC[C@]2(C@@HC1(C)C)C
O1CCNH+CCCCOC(=O)[C@]12C@@HC@@HC(C)=C
O=C1CC[C@]2(C@@HC1(C)C)C
O=C1CC[C@]2(C@@HC1(C)C)C
……

About

Prediction of anti-breast cancer active molecules.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages