Skip to content

DRAC 2022 Task 2: OCTA Image Quality Assessment, which solves the task of rating OCTA image quality according to poor, good and excellent.

License

Notifications You must be signed in to change notification settings

iewug/drac2022-task2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DRAC 2022 Task 2 Image Quality Assessment

This repo covers our solution for MICCAI2022 Diabetic Retinopathy Analysis Challenge (DRAC), which solves the task of rating OCTA image quality according to poor, good and excellent.

Dataset

Download the dataset from the official website: https://drac22.grand-challenge.org/

Install

# 1. Create a conda virtual environment.
conda create -n drac python=3.9 -y
conda activate drac

# 2. Install PyTorch (We use PyTorch 2.0 built under cuda 11.8)
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia

# 3.
pip install timm
pip install pandas
pip install scikit-learn
pip install torchnet

Folder Structure

.
├── checkpoints
│   ├── effb2
│   ├── incepv3
│   ├── resnet18
│   └── resnet50d
├── data
│   ├── 1. Original Images
│   │   ├── a. Training Set
│   │   └── b. Testing Set
│   ├── 2. Groundtruths
│   └── LICENSE.txt
├── dataset.py
├── main.py
├── README.md
├── results
│   ├── effb2
│   ├── incepv3
│   ├── resnet18
│   └── resnet50d
├── test_multi.py
└── test.py

Train & Eval

python main.py --model resnet50d

Test

python test_multi.py --model resnet50d

About

DRAC 2022 Task 2: OCTA Image Quality Assessment, which solves the task of rating OCTA image quality according to poor, good and excellent.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages