-
Notifications
You must be signed in to change notification settings - Fork 285
/
demo_meta_template.py
55 lines (43 loc) · 1.28 KB
/
demo_meta_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pycuda.driver as cuda
import pycuda.autoinit
import numpy
import numpy.linalg as la
from pycuda.compiler import SourceModule
thread_strides = 16
block_size = 32
macroblock_count = 33
total_size = thread_strides*block_size*macroblock_count
dtype = numpy.float32
a = numpy.random.randn(total_size).astype(dtype)
b = numpy.random.randn(total_size).astype(dtype)
a_gpu = cuda.to_device(a)
b_gpu = cuda.to_device(b)
c_gpu = cuda.mem_alloc(a.nbytes)
from jinja2 import Template
tpl = Template("""
__global__ void add(
{{ type_name }} *tgt,
{{ type_name }} *op1,
{{ type_name }} *op2)
{
int idx = threadIdx.x +
{{ block_size }} * {{thread_strides}}
* blockIdx.x;
{% for i in range(thread_strides) %}
{% set offset = i*block_size %}
tgt[idx + {{ offset }}] =
op1[idx + {{ offset }}]
+ op2[idx + {{ offset }}];
{% endfor %}
}""")
rendered_tpl = tpl.render(
type_name="float", thread_strides=thread_strides,
block_size=block_size)
mod = SourceModule(rendered_tpl)
# end
func = mod.get_function("add")
func(c_gpu, a_gpu, b_gpu,
block=(block_size,1,1),
grid=(macroblock_count,1))
c = cuda.from_device_like(c_gpu, a)
assert la.norm(c-(a+b)) == 0