-
PyTorch implementation of Conservative Estimation with Experience Replay (CEER).
-
Method is tested on Sokoban, Minigrid and MinAtar environments.
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -r requirements.txt
- My Python version is 3.7.11. CUDA version is 11.4.
python main.py
-
Modify
atari_name_list
inceer/arguments.py
for different environments. -
For example,
'atari_name_list': ['Sokoban-Push_5x5_1_120']
. -
Other parameters like
sample_method_para # alpha
,policy_loss_para # lambda
are also inceer/arguments.py
.
@inproceedings{
zhang2023replay,
title={Replay Memory as An Empirical {MDP}: Combining Conservative Estimation with Experience Replay},
author={Hongming Zhang and Chenjun Xiao and Han Wang and Jun Jin and Bo Xu and Martin M{\"u}ller},
booktitle={The Eleventh International Conference on Learning Representations },
year={2023},
url={https://openreview.net/forum?id=SjzFVSJUt8S}
}
-
Awesome Environments used for testing:
Sokoban: https://github.com/mpSchrader/gym-sokoban
Minigrid: https://github.com/Farama-Foundation/Minigrid
MinAtar: https://github.com/kenjyoung/MinAtar
-
Some baselines can be found in following works:
TER: https://openreview.net/forum?id=OXRZeMmOI7a
Dreamerv2: https://github.com/RajGhugare19/dreamerv2
Tianshou: https://github.com/thu-ml/tianshou