@@ -81,8 +81,8 @@ def main(args_in: Optional[List[str]] = None) -> None:
81
81
else :
82
82
from transformers import AutoModelForCausalLM , AutoTokenizer
83
83
print ("Loading model: " , dir_model )
84
- model = AutoModelForCausalLM .from_pretrained (dir_model )
85
- tokenizer = AutoTokenizer .from_pretrained (dir_model )
84
+ model = AutoModelForCausalLM .from_pretrained (dir_model , trust_remote_code = True )
85
+ tokenizer = AutoTokenizer .from_pretrained (dir_model , trust_remote_code = True )
86
86
model .eval ()
87
87
for p in model .parameters ():
88
88
p .requires_grad = False
@@ -111,15 +111,18 @@ def main(args_in: Optional[List[str]] = None) -> None:
111
111
hparams ["num_attention_heads" ])))
112
112
fout .write (struct .pack ("i" , ftype ))
113
113
fout .write (
114
- struct .pack ("i" , hparams ["seq_length" ] if "seq_length" in hparams else hparams [ " max_position_embeddings" ]))
114
+ struct .pack ("i" , hparams ["max_position_embeddings" ]))
115
115
fout .write (struct .pack ("f" , 0.0 ))
116
116
fout .write (struct .pack ("f" , 0.0 ))
117
117
fout .write (struct .pack ("i" , 0 ))
118
118
fout .write (struct .pack ("i" , 0 )) # word_embed_proj_dim (for opt)
119
119
fout .write (struct .pack ("i" , 0 )) # do_layer_norm_before (for opt)
120
120
121
121
fout .write (struct .pack ("i" , 0 ))
122
- fout .write (struct .pack ("i" , hparams ["intermediate_size" ]))
122
+ if hparams ['model_type' ]== 'qwen2' :
123
+ fout .write (struct .pack ("i" , hparams ["intermediate_size" ]))
124
+ else :
125
+ fout .write (struct .pack ("i" , int (hparams ["intermediate_size" ]/ 2 )))
123
126
fout .write (struct .pack ("i" , 0 ))
124
127
fout .write (struct .pack ("i" , 0 )) # n_experts
125
128
fout .write (struct .pack ("i" , 0 )) # n_expert_used
0 commit comments