Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API] Add LLaMA decoder API. #386

Merged
merged 5 commits into from
May 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions include/dtype.h
Original file line number Diff line number Diff line change
Expand Up @@ -38,4 +38,17 @@ enum DeviceKind {
iCPU = 0,
iGPU,
};

enum NormType {
RMS = 0,
LN,
};

enum ActivationType {
RELU = 0,
GELU,
SWIGLU,
SILU,
};

} // namespace xft
29 changes: 29 additions & 0 deletions include/layers.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
// Copyright (c) 2024 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ============================================================================
#pragma once

#include "dtype.h"

namespace xft {

void invokeLayerLLaMA(DataType dt, ActivationType at, NormType nt, int batchSize, int inputSeqLen, int attHeadDim,
int attHeadNum, int kvHeadNum, int maxPositions, int maxPosEmbed, int pastSeqLen, int currentSeqLen, int step,
int hiddenSize, int intermediateSize, void *output, int outputStride, const void *input, int inputStride,
const float *ln1Gamma, const float *ln1Beta, const void *queryWeight, const void *keyWeight,
const void *valueWeight, const void *attnOutWeight, const float *ln2Gamma, const float *ln2Beta,
const void *gateWeight, const void *upWeight, const void *downWeight, const float *queryBias = nullptr,
const float *keyBias = nullptr, const float *valueBias = nullptr, const float *attnOutBias = nullptr);

} // namespace xft
4 changes: 2 additions & 2 deletions include/layers_attention.h
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ void invokeAttention(DataType dt,
void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHeadDim, int attHeadNum, int kvHeadNum,
int maxPositions, int maxPosEmbed, int pastSeqLen, int currentSeqLen, int step, int hiddenSize, void *output,
int outputStride, const void *input, int inputStride, const void *queryWeight, const void *keyWeight,
const void *valueWeight, const void *attnOutWeight, const void *queryBias = nullptr,
const void *keyBias = nullptr, const void *valueBias = nullptr, const void *attnOutBias = nullptr);
const void *valueWeight, const void *attnOutWeight, const float *queryBias = nullptr,
const float *keyBias = nullptr, const float *valueBias = nullptr, const float *attnOutBias = nullptr);

} // namespace xft
40 changes: 21 additions & 19 deletions src/layers/attention.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@ namespace xft {
void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHeadDim, int attHeadNum, int kvHeadNum,
int maxPositions, int maxPosEmbed, int pastSeqLen, int currentSeqLen, int step, int hiddenSize, void *output,
int outputStride, const void *input, int inputStride, const void *queryWeight, const void *keyWeight,
const void *valueWeight, const void *attnOutWeight, const void *queryBias, const void *keyBias,
const void *valueBias, const void *attnOutBias) {
const void *valueWeight, const void *attnOutWeight, const float *queryBias, const float *keyBias,
const float *valueBias, const float *attnOutBias) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);

Expand Down Expand Up @@ -81,15 +81,16 @@ void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHe
llama_attention_hub;

static DecoderContext *ctx;
static KVCacheManager<float> *kvCacheMgr;
static KVCacheManager<float16_t> *kvCacheMgr;

if (ctx == nullptr || (ctx != nullptr && (ctx->hiddenSize != hiddenSize || ctx->attHeadSize != attHeadDim))) {
if (ctx != nullptr) delete ctx;
printf(">> create context: %d %d\n", hiddenSize, attHeadDim);
ctx = new DecoderContext(1, hiddenSize, attHeadDim, attHeadNum, kvHeadNum, 1, "silu", 1e-6, 0, 0,
maxPositions, maxPosEmbed, -1, 0, 1);
ctx->mmHelper = new MMHelper(Env::getInstance().getEngineKind(), Env::getInstance().getEngineIndex());
kvCacheMgr = new KVCacheManager<float>(1);
if (kvCacheMgr != nullptr) delete kvCacheMgr;
kvCacheMgr = new KVCacheManager<float16_t>(1);
}

// create hash key and value: if hidden and intermediateSize is changed , then memory pointer is also changed.
Expand All @@ -102,10 +103,10 @@ void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHe
auto it_created = llama_attention_hub.find(llama_attention_key);
if (it_created == llama_attention_hub.end()) {
llama_attention = new Attention<bfloat16_t, LlamaRotaryEmbedding, RmsNorm>(0, ctx);
llama_attention->setWeights(ctx, (float *)queryWeight, nullptr, nullptr, (float *)queryBias,
(float *)keyWeight, nullptr, nullptr, (float *)keyBias, (float *)valueWeight, nullptr, nullptr,
(float *)valueBias, (float *)attnOutWeight, nullptr, nullptr, (float *)attnOutBias, false, nullptr,
nullptr, false);
llama_attention->setWeights(ctx, (const float *)queryWeight, nullptr, nullptr, queryBias,
(const float *)keyWeight, nullptr, nullptr, keyBias, (const float *)valueWeight, nullptr, nullptr,
valueBias, (const float *)attnOutWeight, nullptr, nullptr, attnOutBias, false, nullptr, nullptr,
false);
llama_attention_hub[llama_attention_key] = llama_attention;
printf(">> create llama_attention_key: %s\n", llama_attention_key.c_str());
} else {
Expand All @@ -120,8 +121,8 @@ void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHe
int workers = 1;
int headsPerSplit = (ctx->kvHeadNum + workers - 1) / workers;
kvCacheMgr->resize(maxPositions, batchSize, headsPerSplit, attHeadDim);
KVCacheTensor<float> &presentKey = kvCacheMgr->getKey(0);
KVCacheTensor<float> &presentValue = kvCacheMgr->getValue(0);
KVCacheTensor<float16_t> &presentKey = kvCacheMgr->getKey(0);
KVCacheTensor<float16_t> &presentValue = kvCacheMgr->getValue(0);

llama_attention->forward(ctx, (float *)input, actBuffers.Data(), (float *)output, attnMask, presentKey,
presentValue, inputSeqLen, pastSeqLen, step == 0, false, false, nullptr);
Expand All @@ -130,15 +131,16 @@ void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHe
llama_attention_hub;

static DecoderContext *ctx;
static KVCacheManager<float> *kvCacheMgr;
static KVCacheManager<float16_t> *kvCacheMgr;

if (ctx == nullptr || (ctx != nullptr && (ctx->hiddenSize != hiddenSize || ctx->attHeadSize != attHeadDim))) {
if (ctx != nullptr) delete ctx;
printf(">> create context: %d %d\n", hiddenSize, attHeadDim);
ctx = new DecoderContext(1, hiddenSize, attHeadDim, attHeadNum, kvHeadNum, 1, "silu", 1e-6, 0, 0,
maxPositions, maxPosEmbed, -1, 0, 1);
ctx->mmHelper = new MMHelper(Env::getInstance().getEngineKind(), Env::getInstance().getEngineIndex());
kvCacheMgr = new KVCacheManager<float>(1);
if (kvCacheMgr != nullptr) delete kvCacheMgr;
kvCacheMgr = new KVCacheManager<float16_t>(1);
}

// create hash key and value: if hidden and intermediateSize is changed , then memory pointer is also changed.
Expand All @@ -151,10 +153,10 @@ void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHe
auto it_created = llama_attention_hub.find(llama_attention_key);
if (it_created == llama_attention_hub.end()) {
llama_attention = new Attention<float16_t, LlamaRotaryEmbedding, RmsNorm>(0, ctx);
llama_attention->setWeights(ctx, (float *)queryWeight, nullptr, nullptr, (float *)queryBias,
(float *)keyWeight, nullptr, nullptr, (float *)keyBias, (float *)valueWeight, nullptr, nullptr,
(float *)valueBias, (float *)attnOutWeight, nullptr, nullptr, (float *)attnOutBias, false, nullptr,
nullptr, false);
llama_attention->setWeights(ctx, (const float *)queryWeight, nullptr, nullptr, queryBias,
(const float *)keyWeight, nullptr, nullptr, keyBias, (const float *)valueWeight, nullptr, nullptr,
valueBias, (const float *)attnOutWeight, nullptr, nullptr, attnOutBias, false, nullptr, nullptr,
false);
llama_attention_hub[llama_attention_key] = llama_attention;
printf(">> create llama_attention_key: %s\n", llama_attention_key.c_str());
} else {
Expand All @@ -163,14 +165,14 @@ void invokeAttentionLLaMA(DataType dt, int batchSize, int inputSeqLen, int attHe

ctx->resize(batchSize, inputSeqLen, pastSeqLen);
hpj::Matrix<float> actBuffers;
actBuffers.Resize(batchSize * inputSeqLen * 2, hiddenSize);
actBuffers.Resize(batchSize * inputSeqLen, hiddenSize);
float *attnMask = prepareAttnMask(ctx, step);

int workers = 1;
int headsPerSplit = (ctx->kvHeadNum + workers - 1) / workers;
kvCacheMgr->resize(maxPositions, batchSize, headsPerSplit, attHeadDim);
KVCacheTensor<float> &presentKey = kvCacheMgr->getKey(0);
KVCacheTensor<float> &presentValue = kvCacheMgr->getValue(0);
KVCacheTensor<float16_t> &presentKey = kvCacheMgr->getKey(0);
KVCacheTensor<float16_t> &presentValue = kvCacheMgr->getValue(0);

llama_attention->forward(ctx, (float *)input, actBuffers.Data(), (float *)output, attnMask, presentKey,
presentValue, inputSeqLen, pastSeqLen, step == 0, false, false, nullptr);
Expand Down
Loading