- Install dependencies
poetry install --with gpt
or
pip install -r gpt-requirements.txt
- Provide parameters
cp .gpt.chat.env.example .env
Irpia-prompt engine is set to "gpt-35-chat". Fill OPENAI_API_KEY with your OpenAI API key.
ENGINE=gpt-35-chat
OPENAI_API_KEY=sk-*************************************************
All OpenAI API default parameters are available en engines.yml
configuration file :
gpt-35-chat:
kw_suggestion_service_factory_module: 'app.services.llm.gpt.gpt_chat_kw_suggestion_service_factory'
kw_suggestion_service_factory_class: 'GptChatKwSuggestionServiceFactory'
defaults:
model_name_or_path: 'gpt-3.5-turbo'
temperature: 0
kw_suggestion_min_nb: 1
kw_suggestion_max_nb: 10
They can be overriden in .env file. For example, to set temperature to 0.5 :
TEMPERATURE=0.5
To use "gpt-35-completion" with custom fine-tuned GPT model, fil OPENAI_KW_GPT_SUGGESTION_MODEL with your model name. As this name may differ from one user to another, it is not set in YAML configuration file.
- Launch application
uvicorn app.main:app --host 0.0.0.0 --port 8000
- Install dependencies
poetry install --with llm
or
pip install -r llm-requirements.txt
- Provide parameters
cp .vigogne.instruct.env.example .env
or
cp .vigogne.chat.env.example .env
Irpia-prompt engine will be set to "vigogne-instruct" or "vigogne-chat".
All default parameters from engines.yml
configuration file can be overriden in .env file in the same way as for GPT option.
- Launch application
uvicorn app.main:app --host 0.0.0.0 --port 8000
Run the provided image with your OpenAI API key :
docker run -d --name irpia-prompt-gpt -p 8000:8000 -e OPENAI_API_KEY=sk-************************************************* joadorn/irpia-prompt-gpt
All parameters from .env file can be overriden with -e option. For example, to set temperature to 0.5 :
docker run -d --name irpia-prompt-gpt -p 8000:8000 -e OPENAI_API_KEY=sk-************************************************* -e TEMPERATURE=0.5 joadorn/irpia-prompt-gpt
Run the provided image on a server powered by a GPU with NVIDIA drivers installed :
docker run -d --gpus all --name irpia-prompt-llm -p 8000:8000 joadorn/irpia-prompt-llm
All parameters from .env file can be overriden with -e option.
Default engine is "vigogne-instruct". To use "vigogne-chat" engine, add -e ENGINE=vigogne-chat
option :
docker run -d --gpus all --name irpia-prompt-llm -p 8000:8000 -e ENGINE=vigogne-chat joadorn/irpia-prompt-llm
Or even take .vigogne.chat.env.example
from this repository as docker environment file :
docker run -d --gpus all --name irpia-prompt-llm -p 8000:8000 --env-file .vigogne.chat.env.example joadorn/irpia-prompt-llm
Generate requirements file with Openai dependencies :
poetry export --without=development,llm --with=gpt -f requirements.txt --output gpt-requirements.txt
Build image with this requirements :
docker image build -t irpia-prompt-gpt:xx -f GPT-Dockerfile .
Generate requirements file with LLM dependencies :
poetry export --without=development,gpt --with=llm -f requirements.txt --output llm-requirements.txt
Build image with this requirements :
docker image build -t irpia-prompt-llm:xx -f LLM-Dockerfile .