Skip to content

Original pytorch implementation of multi-scale estimation for omni-directional saliency maps in IEICE journal paper

License

Notifications You must be signed in to change notification settings

islab-sophia/odisal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

odisal

This repository contains the pytorch implementation of omni-directional saliency map estimation in IEICE journal paper:

  • Takao Yamanaka, Tatsuya Suzuki, Taiki Nobutsune, and Chenjunlin Wu, "Multi-Scale Estimation for Omni-Directional Saliency Maps Using Learnable Equator Bias," IEICE Transactions on Information and Systems, Vol. E106-D, No. 10, 2023. https://arxiv.org/abs/2309.08139

ODI ODISaliency

Downloads

In addition to this repository, download the following zip files, unzip them, and place them under the odisal folders.

Since the following folders include only output files, it does not have to be downloaded.

Examples

Multi-Scale Estimation (Multi-Angles of View; MAV)

> cd program
> python pipeline.py --cfg config/DenseSal_ch512_100_110_120.yaml

Signle-Scale Estimation (Single Angle of View; SAV)

> cd program
> python pipeline.py --cfg config/DenseSal_BA2_with_features_ch512_100.yaml

'pipeline.py' excecutes fine-tuning, estimation, and evaluation for an omni-directional image dataset with the settings in 'program/confing/*.yaml'.


A trained model for MAV with DenseSal is avalabile in
'program/logs/salient360_2018_BA2_with_feature_100_110_120/densesalbi3/ckpt/checkpoint_20230903-195522_model_best.pth.tar'

If you want to estimate saliency maps for omni-directional images (ODI) with the trained model without training,

  1. Comment out 'Train:' and 'EVALUATE:' parts in 'program/config/DenseSal_ch512_100_110_120.yaml'. Only leave the 'ESTIMATE:' part.
  2. Set the path to the model file in 'Resume' in the yaml file.

ESTIMATE > SETTING > RESUME: logs/salient360_2018_BA2_with_feature_100_110_120/densesalbi3/ckpt/checkpoint_20230903-195522_model_best.pth.tar

  1. Run the pipeline.py.

python pipeline.py --cfg config/DenseSal_ch512_100_110_120.yaml

The estimated ODI saliency maps will be obtained in the 'outputs' folder.

Settings in config (program/config)

Settings for MainNet (densesalbi3 / dpnsal131_dilation_multipath / deepgaze2e)

ARCH: densesalbi3


Settings for Multi-scale estimation

MAV (Multi-Angles of View)

VIEW_ANGLE: [100, 110, 120 ]
USE_MULTISCALE_MODEL: True

DATASET_CFG_PATH: ../DataSets/salient360_2018_BA2_with_feature_100_110_120/salient360_2018_BA2_with_features_E26_1600_800_500_500_100_110_120.cfg

SAV (Single Angle of View)

VIEW_ANGLE: 100
USE_MULTISCALE_MODEL: False

DATASET_CFG_PATH: ../DataSets/salient360_2018_SVA_100/salient360_2018_SVA_E26_1600_800_500_500.cfg

Settings for the integration layer (Table 1)

Arch. 1

USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_V2_LAYER: False
USE_BASIC_ATTENTION_WITH_FEATURE: False

Arch. 2

USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: False
USE_BASIC_ATTENTION_V2_LAYER: True
USE_BASIC_ATTENTION_WITH_FEATURE: False

Arch. 3

USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_V2_LAYER: False
USE_BASIC_ATTENTION_WITH_FEATURE: True

Arch. 4

USE_FUSION_LAYER: False
USE_ATTENTION_LAYER: True
USE_BASIC_ATTENTION_LAYER: False
USE_BASIC_ATTENTION_V2_LAYER: True
USE_BASIC_ATTENTION_WITH_FEATURE: True

References

  1. Takao Yamanaka, Tatsuya Suzuki, Taiki Nobutsune, and Chenjunlin Wu, "Multi-Scale Estimation for Omni-Directional Saliency Maps Using Learnable Equator Bias," IEICE Transactions on Information and Systems, Vol. E106-D, No. 10, 2023. https://arxiv.org/abs/2309.08139
  2. T. Suzuki and T. Yamanaka, "Saliency Map Estimation for Omni-Directional Image Considering Prior Distributions," IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, Miyazaki, Japan. http://arxiv.org/abs/1807.06329
  3. T. Oyama and T. Yamanaka, "Influence of Image Classification Accuracy on Saliency Map Estimation," CAAI Transactions on Intelligence Technology, vol. 3, issue 3, 2018, pp. 140-152. https://digital-library.theiet.org/content/journals/10.1049/trit.2018.1012 https://arxiv.org/abs/1807.10657
  4. Akis Linardos, Matthias Kümmerer, Ori Press, and Matthias Bethge, "DeepGaze IIE: Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling," ICCV 2021. https://arxiv.org/abs/2105.12441 https://github.com/matthias-k/DeepGaze

Versions

The codes were confirmed with the following versions.

  • Python 3.9.7
  • PyTorch 2.0.0+cu117
  • NVIDIA Driver: 510.47.03
  • CUDA: 11.6

About

Original pytorch implementation of multi-scale estimation for omni-directional saliency maps in IEICE journal paper

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published