This repository has been archived by the owner on Nov 20, 2023. It is now read-only.
forked from bobbicodes/4bb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
problems.clj
2370 lines (2167 loc) · 103 KB
/
problems.clj
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(def problems
[{:_id 1
:title "Nothing but the Truth"
:tests ["(= __ true)"]
:description "Complete the expression so
it will evaluate to true."}
{:_id 2
:title "Simple Math"
:tests ["(= (- 10 (* 2 3)) __)"]
:description "Innermost forms are evaluated first."}
{:_id 3
:title "Strings"
:tests ["(= __ (.toUpperCase \"hello world\"))"]
:description "Clojure strings are Java strings,
so you can use Java string methods on them."}
{:_id 4
:title "Lists"
:tests ["(= (list __) '(:a :b :c))"]
:description "Lists can be constructed with either
a function or a quoted form."}
{:_id 5
:title "conj on lists"
:tests ["(= __ (conj '(2 3 4) 1))"
"(= __ (conj '(3 4) 2 1))"]
:description "When operating on a list,
the conj function will return a new list
with one or more items \"added\" to the front."}
{:_id 6 :title "Vectors"
:tests ["(= [__] (list :a :b :c) (vec '(:a :b :c)) (vector :a :b :c))"]
:description "Vectors can be constructed several ways.
You can compare them with lists."}
{:_id 7
:title "conj on vectors"
:tests ["(= __ (conj [1 2 3] 4))"
"(= __ (conj [1 2] 3 4))"]
:description "When operating on a Vector,
the conj function will return a new vector
with one or more items \"added\" to the end."}
{:_id 8
:title "Sets"
:tests ["(= __ (set '(:a :a :b :c :c :c :c :d :d)))"
"(= __ (clojure.set/union #{:a :b :c} #{:b :c :d}))"]
:description "Sets are collections of unique values."}
{:_id 9 :title "conj on sets"
:tests ["(= #{1 2 3 4} (conj #{1 4 3} __))"]
:description "When operating on a set,
the conj function returns a new set with one or more keys \"added\"."}
{:_id 10 :title "Maps"
:tests ["(= __ ((hash-map :a 10, :b 20, :c 30) :b))"
"(= __ (:b {:a 10, :b 20, :c 30}))"]
:description "Maps store key-value pairs.
Both maps and keywords can be used as lookup functions.
Commas are whitespace."}
{:_id 11 :title "conj on maps"
:tests ["(= {:a 1, :b 2, :c 3} (conj {:a 1} __ [:c 3]))"]
:description "When operating on a map,
the conj function returns a new map
with one or more key-value pairs \"added\"."}
{:_id 12
:title "Sequences"
:tests ["(= __ (first '(3 2 1)))"
"(= __ (second [2 3 4]))"
"(= __ (last (list 1 2 3)))"]
:description "All Clojure collections support sequencing.
You can operate on sequences with functions
like first, second, and last."}
{:_id 13
:title "rest"
:tests ["(= __ (rest [10 20 30 40]))"]
:description "The rest function will return all the items
of a sequence except the first."}
{:_id 14
:title "Functions"
:tests ["(= __ ((fn add-five [x] (+ x 5)) 3))"
"(= __ ((fn [x] (+ x 5)) 3))"
"(= __ (#(+ % 5) 3))"
"(= __ ((partial + 5) 3))"]
:description "Clojure has many different ways to create functions."}
{:_id 15
:title "Double Down"
:tests ["(= (__ 2) 4)"
"(= (__ 3) 6)"
"(= (__ 11) 22)"
"(= (__ 7) 14)"]
:description "Write a function which doubles a number."}
{:_id 16
:title "Hello World"
:tests ["(= (__ \"Dave\") \"Hello, Dave!\")"
"(= (__ \"Jenn\") \"Hello, Jenn!\")"
"(= (__ \"Rhea\") \"Hello, Rhea!\")"]
:description "Write a function which returns a personalized greeting."}
{:_id 17
:title "map"
:tests ["(= __ (map #(+ % 5) '(1 2 3)))"]
:description "The map function takes two arguments:
a function (f) and a sequence (s).
Map returns a new sequence consisting of
the result of applying f to each item of s.
Do not confuse the map function with the map data structure."}
{:_id 18
:title "filter"
:tests ["(= __ (filter #(> % 5) '(3 4 5 6 7)))"]
:description "The filter function takes two arguments:
a predicate function (f) and a sequence (s).
Filter returns a new sequence consisting
of all the items of s for which (f item) returns true."}
{:_id 19
:restricted ["last"]
:title "Last Element"
:tests ["(= (__ [1 2 3 4 5]) 5)"
"(= (__ '(5 4 3)) 3)"
"(= (__ [\"b\" \"c\" \"d\"]) \"d\")"]
:description "Write a function which returns
the last element in a sequence."}
{:_id 20
:title "Penultimate Element"
:tests ["(= (__ (list 1 2 3 4 5)) 4)"
"(= (__ [\"a\" \"b\" \"c\"]) \"b\")"
"(= (__ [[1 2] [3 4]]) [1 2])"]
:description "Write a function which returns
the second to last element from a sequence."}
{:_id 21
:restricted ["nth"]
:title "Nth Element"
:tests ["(= (__ '(4 5 6 7) 2) 6)"
"(= (__ [:a :b :c] 0) :a)"
"(= (__ [1 2 3 4] 1) 2)"
"(= (__ '([1 2] [3 4] [5 6]) 2) [5 6])"]
:description "Write a function which returns
the Nth element from a sequence."}
{:_id 22
:restricted ["count"]
:title "Count a Sequence"
:tests ["(= (__ '(1 2 3 3 1)) 5)"
"(= (__ \"Hello World\") 11)"
"(= (__ [[1 2] [3 4] [5 6]]) 3)"
"(= (__ '(13)) 1)"
"(= (__ '(:a :b :c)) 3)"]
:description "Write a function which returns
the total number of elements in a sequence."
:tags ["easy" "seqs" "core-functions"]}
{:_id 23
:restricted ["reverse"]
:title "Reverse a Sequence"
:tests ["(= (__ [1 2 3 4 5]) [5 4 3 2 1])"
"(= (__ (sorted-set 5 7 2 7)) '(7 5 2))"
"(= (__ [[1 2][3 4][5 6]]) [[5 6][3 4][1 2]])"]
:description "Write a function which reverses a sequence."
:tags ["easy" "seqs" "core-functions"]}
{:_id 24
:title "Sum It All Up"
:tests ["(= (__ [1 2 3]) 6)"
"(= (__ (list 0 -2 5 5)) 8)"
"(= (__ #{4 2 1}) 7)"
"(= (__ '(0 0 -1)) -1)"
"(= (__ '(1 10 3)) 14)"]
:description "Write a function which returns
the sum of a sequence of numbers."
:tags ["easy" "seqs"]}
{:_id 25
:title "Find the odd numbers"
:tests ["(= (__ #{1 2 3 4 5}) '(1 3 5))"
"(= (__ [4 2 1 6]) '(1))"
"(= (__ [2 2 4 6]) '())"
"(= (__ [1 1 1 3]) '(1 1 1 3))"]
:description "Write a function which returns
only the odd numbers from a sequence."
:tags ["easy" "seqs"]}
{:_id 26
:title "Fibonacci Sequence"
:tests ["(= (__ 3) '(1 1 2))"
"(= (__ 6) '(1 1 2 3 5 8))"
"(= (__ 8) '(1 1 2 3 5 8 13 21))"]
:description "Write a function which returns
the first X fibonacci numbers."
:tags ["easy" "Fibonacci" "seqs"]}
{:_id 27
:title "Palindrome Detector"
:tests ["(false? (__ '(1 2 3 4 5)))"
"(true? (__ \"racecar\"))"
"(true? (__ [:foo :bar :foo]))"
"(true? (__ '(1 1 3 3 1 1)))"
"(false? (__ '(:a :b :c)))"]
:description "Write a function which returns true
if the given sequence is a palindrome.
Hint: \"racecar\" does not equal '(\\r \\a \\c \\e \\c \\a \\r)"
:tags ["easy" "seqs"]}
{:_id 28
:restricted ["flatten"]
:title "Flatten a Sequence"
:tests ["(= (__ '((1 2) 3 [4 [5 6]])) '(1 2 3 4 5 6))"
"(= (__ [\"a\" [\"b\"] \"c\"]) '(\"a\" \"b\" \"c\"))"
"(= (__ '((((:a))))) '(:a))"]
:description "Write a function which flattens a sequence."
:tags ["easy" "seqs" "core-functions"]}
{:_id 29
:title "Get the Caps"
:tests ["(= (__ \"HeLlO, WoRlD!\") \"HLOWRD\")"
"(empty? (__ \"nothing\"))"
"(= (__ \"$#A(*&987Zf\") \"AZ\")"]
:description "Write a function which takes a string
and returns a new string containing only the capital letters."
:tags ["easy" "strings"]}
{:_id 30
:title "Compress a Sequence"
:tests ["(= (apply str (__ \"Leeeeeerrroyyy\")) \"Leroy\")"
"(= (__ [1 1 2 3 3 2 2 3]) '(1 2 3 2 3))"
"(= (__ [[1 2] [1 2] [3 4] [1 2]]) '([1 2] [3 4] [1 2]))"]
:description "Write a function which removes
consecutive duplicates from a sequence."
:tags ["easy" "seqs"]}
{:_id 31
:title "Pack a Sequence"
:tests ["(= (__ [1 1 2 1 1 1 3 3]) '((1 1) (2) (1 1 1) (3 3)))"
"(= (__ [:a :a :b :b :c]) '((:a :a) (:b :b) (:c)))"
"(= (__ [[1 2] [1 2] [3 4]]) '(([1 2] [1 2]) ([3 4])))"]
:description "Write a function which
packs consecutive duplicates into sub-lists."
:tags ["easy" "seqs"]}
{:_id 32
:title "Duplicate a Sequence"
:tests ["(= (__ [1 2 3]) '(1 1 2 2 3 3))"
"(= (__ [:a :a :b :b]) '(:a :a :a :a :b :b :b :b))"
"(= (__ [[1 2] [3 4]]) '([1 2] [1 2] [3 4] [3 4]))"
"(= (__ [44 33]) [44 44 33 33])"]
:description "Write a function which
duplicates each element of a sequence."
:tags ["easy" "seqs"]}
{:_id 33
:title "Replicate a Sequence"
:tests ["(= (__ [1 2 3] 2) '(1 1 2 2 3 3))"
"(= (__ [:a :b] 4) '(:a :a :a :a :b :b :b :b))"
"(= (__ [4 5 6] 1) '(4 5 6))"
"(= (__ [[1 2] [3 4]] 2) '([1 2] [1 2] [3 4] [3 4]))"
"(= (__ [44 33] 2) [44 44 33 33])"]
:description "Write a function which replicates each
element of a sequence a variable number of times."
:tags ["easy" "seqs"]}
{:_id 34
:restricted ["range"]
:title "Implement range"
:tests ["(= (__ 1 4) '(1 2 3))"
"(= (__ -2 2) '(-2 -1 0 1))"
"(= (__ 5 8) '(5 6 7))"]
:description "Write a function which creates a list
of all integers in a given range."
:tags ["easy" "seqs" "core-functions"]}
{:_id 35
:title "Local bindings"
:tests ["(= __ (let [x 5] (+ 2 x)))"
"(= __ (let [x 3, y 10] (- y x)))"
"(= __ (let [x 21] (let [y 3] (/ x y))))"]
:description "Clojure lets you give local names
to values using the special let-form."
:tags ["elementary" "syntax"]}
{:_id 36
:title "Let it Be"
:tests ["(= 10 (let __ (+ x y)))"
"(= 4 (let __ (+ y z)))"
"(= 1 (let __ z))"]
:description "Can you bind x, y, and z so that these are all true?"
:tags ["elementary" "math" "syntax"]}
{:_id 37
:title "Regular Expressions"
:tests ["(= __ (apply str (re-seq #\"[A-Z]+\" \"bA1B3Ce \")))"]
:description "Regex patterns are supported with a special reader macro."
:tags ["elementary" "regex" "syntax"]}
{:_id 38
:restricted ["max" "max-key"]
:title "Maximum value"
:tests ["(= (__ 1 8 3 4) 8)"
"(= (__ 30 20) 30)" "(= (__ 45 67 11) 67)"]
:description "Write a function which takes a variable number
of parameters and returns the maximum value."
:tags ["easy" "core-functions"]}
{:_id 39
:restricted ["interleave"]
:title "Interleave Two Seqs"
:tests ["(= (__ [1 2 3] [:a :b :c]) '(1 :a 2 :b 3 :c))"
"(= (__ [1 2] [3 4 5 6]) '(1 3 2 4))"
"(= (__ [1 2 3 4] [5]) [1 5])"
"(= (__ [30 20] [25 15]) [30 25 20 15])"]
:description "Write a function which takes two sequences
and returns the first item from each,
then the second item from each, then the third, etc."
:tags ["easy" "seqs" "core-functions"]}
{:_id 40
:restricted ["interpose"]
:title "Interpose a Seq"
:tests ["(= (__ 0 [1 2 3]) [1 0 2 0 3])"
"(= (apply str (__ \", \" [\"one\" \"two\" \"three\"])) \"one, two, three\")"
"(= (__ :z [:a :b :c :d]) [:a :z :b :z :c :z :d])"]
:description "Write a function which separates
the items of a sequence by an arbitrary value."
:tags ["easy" "seqs" "core-functions"]}
{:_id 41
:title "Drop Every Nth Item"
:tests ["(= (__ [1 2 3 4 5 6 7 8] 3) [1 2 4 5 7 8])"
"(= (__ [:a :b :c :d :e :f] 2) [:a :c :e])"
"(= (__ [1 2 3 4 5 6] 4) [1 2 3 5 6])"]
:description "Write a function which
drops every Nth item from a sequence."
:tags ["easy" "seqs"]}
{:_id 42
:title "Factorial Fun"
:tests ["(= (__ 1) 1)"
"(= (__ 3) 6)"
"(= (__ 5) 120)"
"(= (__ 8) 40320)"]
:description "Write a function which calculates factorials."
:tags ["easy" "math"]}
{:_id 43
:title "Reverse Interleave"
:tests ["(= (__ [1 2 3 4 5 6] 2) '((1 3 5) (2 4 6)))"
"(= (__ (range 9) 3) '((0 3 6) (1 4 7) (2 5 8)))"
"(= (__ (range 10) 5) '((0 5) (1 6) (2 7) (3 8) (4 9)))"]
:description "Write a function which reverses the
interleave process into x number of subsequences."
:tags ["medium" "seqs"]}
{:_id 44
:title "Rotate Sequence"
:tests ["(= (__ 2 [1 2 3 4 5]) '(3 4 5 1 2))"
"(= (__ -2 [1 2 3 4 5]) '(4 5 1 2 3))"
"(= (__ 6 [1 2 3 4 5]) '(2 3 4 5 1))"
"(= (__ 1 '(:a :b :c)) '(:b :c :a))"
"(= (__ -4 '(:a :b :c)) '(:c :a :b))"]
:description "Write a function which
can rotate a sequence in either direction."
:tags ["medium" "seqs"]}
{:_id 45
:title "Intro to Iterate"
:tests ["(= __ (take 5 (iterate #(+ 3 %) 1)))"]
:description "The iterate function can be used to produce
an infinite lazy sequence."
:tags ["easy" "seqs"]}
{:_id 46
:title "Flipping out"
:tests ["(= 3 ((__ nth) 2 [1 2 3 4 5]))"
"(= true ((__ >) 7 8))"
"(= 4 ((__ quot) 2 8))"
"(= [1 2 3] ((__ take) [1 2 3 4 5] 3))"]
:description "Write a higher-order function which
flips the order of the arguments of an input function."
:tags ["medium" "higher-order-functions"]}
{:_id 47
:title "Contain Yourself"
:tests ["(contains? #{4 5 6} __)"
"(contains? [1 1 1 1 1] __)"
"(contains? {4 :a 2 :b} __)"
"(not (contains? [1 2 4] __))"]
:description "The contains? function checks if a KEY
is present in a given collection.
This often leads beginner clojurians to use it incorrectly
with numerically indexed collections like vectors and lists."
:tags ["easy"]}
{:_id 48
:title "Intro to some"
:tests ["(= __ (some #{2 7 6} [5 6 7 8]))"
"(= __ (some #(when (even? %) %) [5 6 7 8]))"]
:description "The some function takes
a predicate function and a collection.
It returns the first logical true value of (predicate x)
where x is an item in the collection."
:tags ["easy"]}
{:_id 49
:restricted ["split-at"]
:title "Split a sequence"
:tests ["(= (__ 3 [1 2 3 4 5 6]) [[1 2 3] [4 5 6]])"
"(= (__ 1 [:a :b :c :d]) [[:a] [:b :c :d]])"
"(= (__ 2 [[1 2] [3 4] [5 6]]) [[[1 2] [3 4]] [[5 6]]])"]
:description "Write a function which will
split a sequence into two parts."
:tags ["easy" "seqs" "core-functions"]}
{:_id 50
:title "Split by Type"
:tests ["(= (set (__ [1 :a 2 :b 3 :c])) #{[1 2 3] [:a :b :c]})"
"(= (set (__ [:a \"foo\" \"bar\" :b])) #{[:a :b] [\"foo\" \"bar\"]})"
"(= (set (__ [[1 2] :a [3 4] 5 6 :b])) #{[[1 2] [3 4]] [:a :b] [5 6]})"]
:description "Write a function which takes
a sequence consisting of items with different types
and splits them up into a set of homogeneous sub-sequences.
The internal order of each sub-sequence should be maintained,
but the sub-sequences themselves can be returned in any order
(this is why 'set' is used in the test cases)."
:tags ["medium" "seqs"]}
{:_id 51
:title "Advanced Destructuring"
:tests ["(= [1 2 [3 4 5] [1 2 3 4 5]] (let [[a b & c :as d] __] [a b c d]))"]
:description "Here is an example of some
more sophisticated destructuring."
:tags ["easy" "destructuring"]}
{:_id 52
:title "Intro to Destructuring"
:tests ["(= [2 4] (let [[a b c d e f g] (range)] __))"]
:description "Let bindings and function parameter lists
support destructuring."
:tags ["easy" "destructuring"]}
{:_id 53
:title "Longest Increasing Sub-Seq"
:tests ["(= (__ [1 0 1 2 3 0 4 5]) [0 1 2 3])"
"(= (__ [5 6 1 3 2 7]) [5 6])"
"(= (__ [2 3 3 4 5]) [3 4 5])"
"(= (__ [7 6 5 4]) [])"]
:description "Given a vector of integers,
find the longest consecutive sub-sequence of increasing numbers.
If two sub-sequences have the same length,
use the one that occurs first.
An increasing sub-sequence must have
a length of 2 or greater to qualify."
:tags ["hard" "seqs"]}
{:_id 54
:restricted ["partition" "partition-all"]
:title "Partition a Sequence"
:tests ["(= (__ 3 (range 9)) '((0 1 2) (3 4 5) (6 7 8)))"
"(= (__ 2 (range 8)) '((0 1) (2 3) (4 5) (6 7)))"
"(= (__ 3 (range 8)) '((0 1 2) (3 4 5)))"]
:description "Write a function which returns
a sequence of lists of x items each.
Lists of less than x items should not be returned."
:tags ["medium" "seqs" "core-functions"]}
{:_id 55
:restricted ["frequencies"]
:title "Count Occurences"
:tests ["(= (__ [1 1 2 3 2 1 1]) {1 4, 2 2, 3 1})"
"(= (__ [:b :a :b :a :b]) {:a 2, :b 3})"
"(= (__ '([1 2] [1 3] [1 3])) {[1 2] 1, [1 3] 2})"]
:description "Write a function which returns a map
containing the number of occurences
of each distinct item in a sequence."
:tags ["medium" "seqs" "core-functions"]}
{:_id 56
:restricted ["distinct"]
:title "Find Distinct Items"
:tests ["(= (__ [1 2 1 3 1 2 4]) [1 2 3 4])"
"(= (__ [:a :a :b :b :c :c]) [:a :b :c])"
"(= (__ '([2 4] [1 2] [1 3] [1 3])) '([2 4] [1 2] [1 3]))"
"(= (__ (range 50)) (range 50))"]
:description "Write a function which
removes the duplicates from a sequence.
Order of the items must be maintained."
:tags ["medium" "seqs" "core-functions"]}
{:_id 57
:title "Simple Recursion"
:tests ["(= __ ((fn foo [x] (when (> x 0) (conj (foo (dec x)) x))) 5))"]
:description "A recursive function is a function which calls itself.
This is one of the fundamental techniques
used in functional programming."
:tags ["elementary" "recursion"]}
{:_id 58
:restricted ["comp"]
:title "Function Composition"
:tests ["(= [3 2 1] ((__ rest reverse) [1 2 3 4]))"
"(= 5 ((__ (partial + 3) second) [1 2 3 4]))"
"(= true ((__ zero? #(mod % 8) +) 3 5 7 9))"
"(= \"HELLO\" ((__ #(.toUpperCase %) #(apply str %) take) 5 \"hello world\"))"]
:description "Write a function which
allows you to create function compositions.
The parameter list should take a variable number of functions,
and create a function applies them from right-to-left."
:tags ["medium" "higher-order-functions" "core-functions"]}
{:_id 59
:restricted ["juxt"]
:title "Juxtaposition"
:tests ["(= [21 6 1] ((__ + max min) 2 3 5 1 6 4))"
"(= [\"HELLO\" 5] ((__ #(.toUpperCase %) count) \"hello\"))"
"(= [2 6 4] ((__ :a :c :b) {:a 2, :b 4, :c 6, :d 8 :e 10}))"]
:description "Take a set of functions and return a new function
that takes a variable number of arguments and returns a sequence
containing the result of applying each function
left-to-right to the argument list."
:tags ["medium" "higher-order-functions" "core-functions"]}
{:_id 60
:restricted ["reductions"]
:title "Sequence Reductions"
:tests ["(= (take 5 (__ + (range))) [0 1 3 6 10])"
"(= (__ conj [1] [2 3 4]) [[1] [1 2] [1 2 3] [1 2 3 4]])"
"(= (last (__ * 2 [3 4 5])) (reduce * 2 [3 4 5]) 120)"]
:description "Write a function which behaves like reduce,
but returns each intermediate value of the reduction.
Your function must accept either two or three arguments,
and the return sequence must be lazy."
:tags ["medium" "seqs" "core-functions"]}
{:_id 61
:restricted ["zipmap"]
:title "Map Construction"
:tests ["(= (__ [:a :b :c] [1 2 3]) {:a 1, :b 2, :c 3})"
"(= (__ [1 2 3 4] [\"one\" \"two\" \"three\"]) {1 \"one\", 2 \"two\", 3 \"three\"})"
"(= (__ [:foo :bar] [\"foo\" \"bar\" \"baz\"]) {:foo \"foo\", :bar \"bar\"})"]
:description "Write a function which takes a vector of keys
and a vector of values and constructs a map from them."
:tags ["easy" "core-functions"]}
{:_id 62
:restricted ["iterate"]
:title "Re-implement Iteration"
:tests ["(= (take 5 (__ #(* 2 %) 1)) [1 2 4 8 16])"
"(= (take 100 (__ inc 0)) (take 100 (range)))"
"(= (take 9 (__ #(inc (mod % 3)) 1)) (take 9 (cycle [1 2 3])))"]
:description "Given a side-effect free function f
and an initial value x
write a function which returns an infinite lazy sequence
of x, (f x), (f (f x)), (f (f (f x))), etc."
:tags ["easy" "seqs" "core-functions"]}
{:_id 63
:restricted ["group-by"]
:title "Group a Sequence"
:tests ["(= (__ #(> % 5) #{1 3 6 8}) {false [1 3], true [6 8]})"
"(= (__ #(apply / %) [[1 2] [2 4] [4 6] [3 6]])\n {1/2 [[1 2] [2 4] [3 6]], 2/3 [[4 6]]})"
"(= (__ count [[1] [1 2] [3] [1 2 3] [2 3]])\n {1 [[1] [3]], 2 [[1 2] [2 3]], 3 [[1 2 3]]})"]
:description "Given a function f and a sequence s,
write a function which returns a map.
The keys should be the values of f applied to each item in s.
The value at each key should be a vector
of corresponding items in the order they appear in s."
:tags ["medium" "seqs" "core-functions"]}
{:_id 64
:title "Intro to Reduce"
:tests ["(= 15 (reduce __ [1 2 3 4 5]))"
"(= 0 (reduce __ []))"
"(= 6 (reduce __ 1 [2 3]))"]
:description "Reduce takes a 2 argument function
and an optional starting value.
It then applies the function to the first 2 items in the sequence
(or the starting value and the first element of the sequence).
In the next iteration the function will be called on
the previous return value and the next item from the sequence,
thus reducing the entire collection to one value.
Don't worry, it's not as complicated as it sounds."
:tags ["elementary" "seqs"]}
{:_id 65
:title "Black Box Testing"
:description "Clojure has many collection types,
which act in subtly different ways.
The core functions typically convert them into
a uniform \"sequence\" type and work with them that way,
but it can be important to understand the behavioral
and performance differences so that you know
which kind is appropriate for your application.
Write a function which takes a collection and returns one of:
map, :set, :list, or :vector -
describing the type of collection it was given.
You won't be allowed to inspect their class
or use the built-in predicates like list? -
the point is to poke at them and understand their behavior."
:tags ["hard" "seqs" "testing"]
:tests ["(= :map (__ {:a 1, :b 2}))"
"(= :list (__ (range (rand-int 20))))"
"(= :vector (__ [1 2 3 4 5 6]))"
"(= :set (__ #{10 (rand-int 5)}))"
"(= [:map :set :vector :list] (map __ [{} #{} [] ()]))"]
:restricted ["class" "type" "Class" "vector?" "sequential?" "list?" "seq?" "map?" "set?" "instance?" "getClass"]}
{:_id 66
:title "Greatest Common Divisor"
:tests ["(= (__ 2 4) 2)"
"(= (__ 10 5) 5)"
"(= (__ 5 7) 1)"
"(= (__ 1023 858) 33)"]
:description "Given two integers, write a function which
returns the greatest common divisor."
:tags ["easy"]}
{:_id 67
:title "Prime Numbers"
:tests ["(= (__ 2) [2 3])"
"(= (__ 5) [2 3 5 7 11])"
"(= (last (__ 100)) 541)"]
:description "Write a function which returns the first x
number of prime numbers."
:tags ["medium" "primes"]}
{:_id 68
:title "Recurring Theme"
:tests ["(= __\n (loop [x 5\n result []]\n (if (> x 0)\n (recur (dec x) (conj result (+ 2 x)))\n result)))"]
:description "Clojure only has one
non-stack-consuming looping construct: recur.
Either a function or a loop can be used as the recursion point.
Either way, recur rebinds the bindings
of the recursion point to the values it is passed.
Recur must be called from the tail-position,
and calling it elsewhere will result in an error."
:tags ["elementary" "recursion"]}
{:_id 69
:restricted ["merge-with"]
:title "Merge with a Function"
:tests ["(= (__ * {:a 2, :b 3, :c 4} {:a 2} {:b 2} {:c 5})\n {:a 4, :b 6, :c 20})"
"(= (__ - {1 10, 2 20} {1 3, 2 10, 3 15})\n {1 7, 2 10, 3 15})"
"(= (__ concat {:a [3], :b [6]} {:a [4 5], :c [8 9]} {:b [7]})\n {:a [3 4 5], :b [6 7], :c [8 9]})"]
:description "Write a function which takes
a function f and a variable number of maps.
Your function should return a map
that consists of the rest of the maps conj-ed onto the first.
If a key occurs in more than one map,
the mapping(s) from the latter (left-to-right)
should be combined with the mapping in the result
by calling (f val-in-result val-in-latter)"
:tags ["medium" "core-functions"]}
{:_id 70
:title "Word Sorting"
:tests ["(= (__ \"Have a nice day.\")\n [\"a\" \"day\" \"Have\" \"nice\"])"
"(= (__ \"Clojure is a fun language!\")\n [\"a\" \"Clojure\" \"fun\" \"is\" \"language\"])"
"(= (__ \"Fools fall for foolish follies.\")\n [\"fall\" \"follies\" \"foolish\" \"Fools\" \"for\"])"]
:description "Write a function which splits a sentence up
into a sorted list of words.
Capitalization should not affect sort order
and punctuation should be ignored."
:tags ["medium" "sorting"]}
{:_id 71
:title "Rearranging Code: ->"
:tests ["(= (__ (sort (rest (reverse [2 5 4 1 3 6]))))\n (-> [2 5 4 1 3 6] reverse rest sort __)\n 5)"]
:description "The -> macro threads an expression x through a variable number of forms.
First, x is inserted as the second item in the first form,
making a list of it if it is not a list already.
Then the first form is inserted as the second item in the second form,
making a list of that form if necessary.
This process continues for all the forms.
Using -> can sometimes make your code more readable."
:tags ["elementary"]}
{:_id 72
:title "Rearranging Code: ->>"
:tests ["(= (__ (map inc (take 3 (drop 2 [2 5 4 1 3 6]))))\n (->> [2 5 4 1 3 6] (drop 2) (take 3) (map inc) (__))\n 11)"]
:description "The ->> macro threads an expression x
through a variable number of forms.
First, x is inserted as the last item in the first form,
making a list of it if it is not a list already.
Then the first form is inserted as the last item in the second form,
making a list of that form if necessary.
This process continues for all the forms.
Using ->> can sometimes make your code more readable."
:tags ["elementary"]}
{:_id 73
:title "Analyze a Tic-Tac-Toe Board"
:tests ["(= nil (__ [[:e :e :e]\n [:e :e :e]\n [:e :e :e]]))"
"(= :x (__ [[:x :e :o]\n [:x :e :e]\n [:x :e :o]]))"
"(= :o (__ [[:e :x :e]\n [:o :o :o]\n [:x :e :x]]))"
"(= nil (__ [[:x :e :o]\n [:x :x :e]\n [:o :x :o]]))"
"(= :x (__ [[:x :e :e]\n [:o :x :e]\n [:o :e :x]]))"
"(= :o (__ [[:x :e :o]\n [:x :o :e]\n [:o :e :x]]))"
"(= nil (__ [[:x :o :x]\n [:x :o :x]\n [:o :x :o]]))"]
:description "A tic-tac-toe board is represented by
a two dimensional vector.
X is represented by :x, O is represented by :o,
and empty is represented by :e.
A player wins by placing three Xs or three Os
in a horizontal, vertical, or diagonal row.
Write a function which analyzes a tic-tac-toe board
and returns :x if X has won, :o if O has won,
and nil if neither player has won."
:tags ["medium" "game"]}
{:_id 74
:title "Filter Perfect Squares"
:tests ["(= (__ \"4,5,6,7,8,9\") \"4,9\")"
"(= (__ \"15,16,25,36,37\") \"16,25,36\")"]
:description "Given a string of comma separated integers,
write a function which returns a new comma separated string
that only contains the numbers which are perfect squares."
:tags ["medium"]}
{:_id 75
:title "Euler's Totient Function"
:tests ["(= (__ 1) 1)"
"(= (__ 10) (count '(1 3 7 9)) 4)"
"(= (__ 40) 16)" "(= (__ 99) 60)"]
:description "Two numbers are coprime if their
greatest common divisor equals 1.
Euler's totient function f(x) is defined as
the number of positive integers less than x which are coprime to x.
The special case f(1) equals 1.
Write a function which calculates Euler's totient function."
:tags ["medium"]}
{:_id 76
:title "Intro to Trampoline"
:tests ["(= __\n (letfn\n [(foo [x y] #(bar (conj x y) y))\n (bar [x y] (if (> (last x) 10)\n x\n #(foo x (+ 2 y))))]\n (trampoline foo [] 1)))"]
:description "The trampoline function takes a function f
and a variable number of parameters.
Trampoline calls f with any parameters that were supplied.
If f returns a function, trampoline
calls that function with no arguments.
This is repeated, until the return value is not a function,
and then trampoline returns that non-function value.
This is useful for implementing mutually recursive algorithms
in a way that won't consume the stack."
:tags ["medium" "recursion"]}
{:_id 77
:title "Anagram Finder"
:tests ["(= (__ [\"meat\" \"mat\" \"team\" \"mate\" \"eat\"])\n #{#{\"meat\" \"team\" \"mate\"}})"
"(= (__ [\"veer\" \"lake\" \"item\" \"kale\" \"mite\" \"ever\"])\n #{#{\"veer\" \"ever\"} #{\"lake\" \"kale\"} #{\"mite\" \"item\"}})"]
:description "Write a function which
finds all the anagrams in a vector of words.
A word x is an anagram of word y if all the letters in x
can be rearranged in a different order to form y.
Your function should return a set of sets,
where each sub-set is a group of words
which are anagrams of each other.
Each sub-set should have at least two words.
Words without any anagrams should not be included in the result."
:tags ["medium"]}
{:_id 78
:restricted ["trampoline"]
:title "Reimplement Trampoline"
:tests ["(= (letfn [(triple [x] #(sub-two (* 3 x)))\n (sub-two [x] #(stop?(- x 2)))\n (stop? [x] (if (> x 50) x #(triple x)))]\n (__ triple 2))\n 82)"
"(= (letfn [(my-even? [x] (if (zero? x) true #(my-odd? (dec x))))\n (my-odd? [x] (if (zero? x) false #(my-even? (dec x))))]\n (map (partial __ my-even?) (range 6)))\n [true false true false true false])"]
:description "Reimplement the function described in <a href=\"76\"> \"Intro to Trampoline\"</a>."
:tags ["medium" "core-functions"]}
{:_id 79
:title "Triangle Minimal Path"
:tests ["(= (__ [ [1]\n [2 4]\n [5 1 4]\n [2 3 4 5]])\n (+ 1 2 1 3)\n 7)"
"(= (__ [ [3]\n [2 4]\n [1 9 3]\n [9 9 2 4]\n [4 6 6 7 8]\n [5 7 3 5 1 4]])\n (+ 3 4 3 2 7 1)\n 20)"]
:description "Write a function which calculates
the sum of the minimal path through a triangle.
The triangle is represented as a vector of vectors.
The path should start at the top of the triangle
and move to an adjacent number on the next row
until the bottom of the triangle is reached."
:tags ["hard"]}
{:_id 80
:title "Perfect Numbers"
:tests ["(= (__ 6) true)"
"(= (__ 7) false)"
"(= (__ 496) true)"
"(= (__ 500) false)"
"(= (__ 8128) true)"]
:description "A number is \"perfect\" if the sum of its divisors
equal the number itself.
6 is a perfect number because 1+2+3=6.
Write a function which returns true for perfect numbers
and false otherwise."
:tags ["medium"]}
{:_id 81
:restricted ["intersection"]
:title "Set Intersection"
:tests ["(= (__ #{0 1 2 3} #{2 3 4 5}) #{2 3})"
"(= (__ #{0 1 2} #{3 4 5}) #{})"
"(= (__ #{:a :b :c :d} #{:c :e :a :f :d}) #{:a :c :d})"]
:description "Write a function which returns
the intersection of two sets.
The intersection is the sub-set of items
that each set has in common."
:tags ["easy" "set-theory"]}
{:_id 82
:title "Word Chains"
:tests ["(= true (__ #{\"hat\" \"coat\" \"dog\" \"cat\" \"oat\" \"cot\" \"hot\" \"hog\"}))"
"(= false (__ #{\"cot\" \"hot\" \"bat\" \"fat\"}))"
"(= false (__ #{\"to\" \"top\" \"stop\" \"tops\" \"toss\"}))"
"(= true (__ #{\"spout\" \"do\" \"pot\" \"pout\" \"spot\" \"dot\"}))"
"(= true (__ #{\"share\" \"hares\" \"shares\" \"hare\" \"are\"}))"
"(= false (__ #{\"share\" \"hares\" \"hare\" \"are\"}))"]
:description "A word chain consists of
a set of words ordered so that each word differs
by only one letter from the words directly before and after it.
The one letter difference can be either an insertion,
a deletion, or a substitution.
Here is an example word chain:
cat -> cot -> coat -> oat -> hat -> hot -> hog -> dog
Write a function which takes a sequence of words,
and returns true if they can be
arranged into one continous word chain,
and false if they cannot."
:tags ["hard" "seqs"]}
{:_id 83
:title "A Half-Truth"
:tests ["(= false (__ false false))"
"(= true (__ true false))"
"(= false (__ true))"
"(= true (__ false true false))"
"(= false (__ true true true))"
"(= true (__ true true true false))"]
:description "Write a function which takes
a variable number of booleans.
Your function should return true if
some of the parameters are true,
but not all of the parameters are true.
Otherwise your function should return false."
:tags ["easy"]}
{:_id 84
:title "Transitive Closure"
:tests ["(let [divides #{[8 4] [9 3] [4 2] [27 9]}]\n (= (__ divides) #{[4 2] [8 4] [8 2] [9 3] [27 9] [27 3]}))"
"(let [more-legs\n #{[\"cat\" \"man\"] [\"man\" \"snake\"] [\"spider\" \"cat\"]}]\n (= (__ more-legs)\n #{[\"cat\" \"man\"] [\"cat\" \"snake\"] [\"man\" \"snake\"]\n [\"spider\" \"cat\"] [\"spider\" \"man\"] [\"spider\" \"snake\"]}))"
"(let [progeny\n #{[\"father\" \"son\"] [\"uncle\" \"cousin\"] [\"son\" \"grandson\"]}]\n (= (__ progeny)\n #{[\"father\" \"son\"] [\"father\" \"grandson\"]\n [\"uncle\" \"cousin\"] [\"son\" \"grandson\"]}))"]
:description "Write a function which generates
the transitive closure of a binary relation.
The relation will be represented as a set of 2 item vectors.", :tags ["hard" "set-theory"]}
{:_id 85 :title "Power Set"
:tests ["(= (__ #{1 :a}) #{#{1 :a} #{:a} #{} #{1}})"
"(= (__ #{}) #{#{}})" "(= (__ #{1 2 3})\n #{#{} #{1} #{2} #{3} #{1 2} #{1 3} #{2 3} #{1 2 3}})"
"(= (count (__ (into #{} (range 10)))) 1024)"],
:description "Write a function which generates the power set of a given set.
The power set of a set x is the set of all subsets of x,
including the empty set and x itself.", :tags ["hard" "set-theory"]}
{:_id 86 :title "Happy numbers"
:tests ["(= (__ 7) true)"
"(= (__ 986543210) true)"
"(= (__ 2) false)" "(= (__ 3) false)"],
:description "Happy numbers are positive integers that
follow a particular formula:
take each individual digit, square it,
and then sum the squares to get a new number.
Repeat with the new number and eventually,
you might get to a number whose squared sum is 1.
This is a happy number.
An unhappy number (or sad number) is one that loops endlessly.
Write a function that determines if a number is happy or not.", :tags
["easy" "math"]}
{:_id 87 :title "Create an Equation"
:tests ["(= (__ 3 4 7) '(= (+ 3 4) 7))" "(= (__ 3 4 12) '(= (* 3 4) 12))" "(= (__ 3 4 14) nil)" "(= (__ 3 4 5 35) '(= (* (+ 3 4) 5) 35))" "(= (__ 3 4 5 60) '(= (+ (* 3 4) 5) 60))" "(= (__ 3 4 5 23) '(= (+ 3 (* 4 5)) 23))" "(= (__ 3 4 5 27) '(= (* 3 (+ 4 5)) 27))" "(= (__ 3 4 5 6) nil)" "(= (__ 1 2 10 100 2001) '(= (+ 1 (* 2 10 100)) 2001)" "(= (__ 1 2 10 100 1300) '(= (* (+ 1 2 10) 100) 1300)"],
:description "Write a function which takes three or more integers.
Using these integers, your function should
generate clojure code representing an equation.
The following rules for the equation must be satisfied:\n
1. All integers must be used once and only once.\n
2. The order of the integers must be
maintained when reading the equation left-to-right.\n
3. The only functions you may use are +, *, or =.\n
4. The equation must use the minimum number of parentheses.\n
5. If no satisfying equation exists, return nil.", :tags ["hard" "code-generation"]}
{:_id 88 :title "Symmetric Difference"
:tests ["(= (__ #{1 2 3 4 5 6} #{1 3 5 7}) #{2 4 6 7})"
"(= (__ #{:a :b :c} #{}) #{:a :b :c})"
"(= (__ #{} #{4 5 6}) #{4 5 6})"
"(= (__ #{[1 2] [2 3]} #{[2 3] [3 4]}) #{[1 2] [3 4]})"]
:description "Write a function which returns
the symmetric difference of two sets.
The symmetric difference is the set of items
belonging to one but not both of the two sets."}
{:_id 89 :title "Graph Tour"
:tests ["(= true (__ [[:a :b]]))"
"(= false (__ [[:a :a] [:b :b]]))"
"(= false (__ [[:a :b] [:a :b] [:a :c] [:c :a]
[:a :d] [:b :d] [:c :d]]))"
"(= true (__ [[1 2] [2 3] [3 4] [4 1]]))"
"(= true (__ [[:a :b] [:a :c] [:c :b] [:a :e]
[:b :e] [:a :d] [:b :d] [:c :e]
[:d :e] [:c :f] [:d :f]]))"
"(= false (__ [[1 2] [2 3] [2 4] [2 5]]))"]
:description "Starting with a graph you must write a function
that returns true if it is possible to make
a tour of the graph in which every edge is visited exactly once.
The graph is represented by a vector of tuples,
where each tuple represents a single edge.
The rules are:
- You can start at any node.
- You must visit each edge exactly once.
- All edges are undirected."}
{:_id 90 :title "Cartesian Product"
:tests ["(= (__ #{\"ace\" \"king\" \"queen\"} #{\"♠\" \"♥\" \"♦\" \"♣\"})
#{[\"ace\" \"♠\"] [\"ace\" \"♥\"] [\"ace\" \"♦\"] [\"ace\" \"♣\"]
[\"king\" \"♠\"] [\"king\" \"♥\"] [\"king\" \"♦\"] [\"king\" \"♣\"]
[\"queen\" \"♠\"] [\"queen\" \"♥\"] [\"queen\" \"♦\"] [\"queen\" \"♣\"]})"
"(= (__ #{1 2 3} #{4 5})
#{[1 4] [2 4] [3 4] [1 5] [2 5] [3 5]})"
"(= 300 (count (__ (into #{} (range 10))
(into #{} (range 30)))))"]
:description "Write a function which calculates
the Cartesian product of two sets."}
{:_id 91 :title "Graph Connectivity"
:tests ["(= true (__ #{[:a :a]}))"
"(= true (__ #{[:a :b]}))"
"(= false (__ #{[1 2] [2 3] [3 1]
[4 5] [5 6] [6 4]}))"
"(= true (__ #{[1 2] [2 3] [3 1]
[4 5] [5 6] [6 4] [3 4]}))"
"(= false (__ #{[:a :b] [:b :c] [:c :d]
[:x :y] [:d :a] [:b :e]}))"
"(= true (__ #{[:a :b] [:b :c] [:c :d]
[:x :y] [:d :a] [:b :e] [:x :a]}))"]
:description "Given a graph, determine whether the graph is connected.
A connected graph is such that
a path exists between any two given nodes.
-Your function must return true if
the graph is connected and false otherwise.
-You will be given a set of tuples
representing the edges of a graph.
Each member of a tuple being a vertex/node in the graph.
-Each edge is undirected (can be traversed either direction)."}
{:_id 92 :title "Read Roman numerals"
:tests ["(= 14 (__ \"XIV\"))"
"(= 827 (__ \"DCCCXXVII\"))"
"(= 3999 (__ \"MMMCMXCIX\"))"
"(= 48 (__ \"XLVIII\"))"]
:description "Roman numerals are easy to recognize,
but not everyone knows all the rules necessary to work with them.
Write a function to parse a Roman-numeral string
and return the number it represents.
You can assume that the input will be well-formed,
in upper-case, and follow the subtractive principle.
You don't need to handle any numbers greater than MMMCMXCIX (3999),
the largest number representable with ordinary letters."}
{:_id 93 :title "Partially Flatten a Sequence"
:tests ["(= (__ [[\"Do\"] [\"Nothing\"]])
[[\"Do\"] [\"Nothing\"]])"
"(= (__ [[[[:a :b]]] [[:c :d]] [:e :f]])
[[:a :b] [:c :d] [:e :f]])"
"(= (__ '((1 2)((3 4)((((5 6)))))))
'((1 2)(3 4)(5 6)))"]
:description "Write a function which
flattens any nested combination of sequential things
(lists, vectors, etc.),
but maintains the lowest level sequential items.
The result should be a sequence of sequences
with only one level of nesting."}
{:_id 94 :title "Game of Life"