-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
133 lines (117 loc) · 4.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import warnings
warnings.filterwarnings(action='ignore', category=FutureWarning)
from data import prepare_CIFAR10
from sampler import PartitionedRepeatedShuffledSampler
from criterion import CrossEntropyLoss
from criterion import MatchingLoss
from cache import Cache
from procedure import run
from wideresnet import WideResNet
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default='./cifar10')
parser.add_argument('--tensorboard_dir', type=str, default='./tensorboards')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--n_labeled', type=int, default=250)
parser.add_argument('--n_val', type=int, default=5000)
parser.add_argument('--k_augment', type=int, default=2)
parser.add_argument('--n_workers', type=int, default=4)
parser.add_argument('--pin_memory', action='store_true')
parser.add_argument('--output_device', type=int, default=0)
parser.add_argument('--n_partitions', type=int, default=1)
parser.add_argument('--n_repeats', type=int, default=1)
parser.add_argument('--sparsity', type=int, default=10)
parser.add_argument('--rampup_steps', type=int, default=16384)
parser.add_argument('--alpha', type=float, default=0.75)
parser.add_argument('--T', type=float, default=0.5)
parser.add_argument('--ema_decay', type=float, default=0.999)
parser.add_argument('--lambda_u', type=float, default=75.0)
parser.add_argument('--n_classes', type=int, default=10)
parser.add_argument('--n_update_imgs', type=int, default=1 << 16 << 10)
parser.add_argument('--n_checkpoint_imgs', type=int, default=1 << 16)
parser.add_argument('--lr', type=float, default=2e-3)
parser.add_argument('--weight_decay', type=float, default=2e-2)
args, unknown = parser.parse_known_args()
return args
if __name__ == '__main__':
print('[parse args]')
args = parse_args()
print(args)
print('[prepare data]')
labeledset, unlabeledset, valset, testset = prepare_CIFAR10(
root=args.dataset_root, n_labeled=args.n_labeled , n_val=args.n_val, k_augment=args.k_augment
)
print('[init dataloaders]')
labeledloader = DataLoader(
dataset=labeledset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.n_workers,
drop_last=True,
pin_memory=args.pin_memory
)
unlabeledloader = DataLoader(
dataset=unlabeledset,
batch_size=args.batch_size,
sampler=PartitionedRepeatedShuffledSampler(
n=len(unlabeledset),
n_partitions=args.n_partitions,
n_repeats=args.n_repeats,
batch_size=args.batch_size
),
num_workers=args.n_workers,
drop_last=True,
pin_memory=args.pin_memory
)
valloader = DataLoader(
dataset=valset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_workers
)
testloader = DataLoader(
dataset=testset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_workers
)
print('[init cache]')
partition_size, _ = divmod(len(unlabeledloader.sampler), args.n_partitions)
assert _ == 0
cache = Cache(n_entries=partition_size, entry_size=args.sparsity).to(args.output_device)
print('[init model]')
model = WideResNet(num_classes=args.n_classes).to(args.output_device)
model_ema = WideResNet(num_classes=args.n_classes).to(args.output_device)
model_ema.load_state_dict(model.state_dict())
print('[init optimizer]')
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
print('[init critera]')
criterion_labeled = CrossEntropyLoss()
criterion_unlabeled = MatchingLoss()
criterion_val = nn.CrossEntropyLoss()
print('[start training]')
with SummaryWriter(log_dir=args.tensorboard_dir) as tblogger:
run(
labeledloader=labeledloader,
unlabeledloader=unlabeledloader,
valloader=valloader,
testloader=testloader,
model=model,
model_ema=model_ema,
optimizer=optimizer,
criterion_labeled=criterion_labeled,
criterion_unlabeled=criterion_unlabeled,
criterion_val=criterion_val,
rampup_steps=args.rampup_steps,
cache=cache,
tblogger=tblogger,
args=args
)
print('[done]')