Skip to content
/ RadarLoc Public

RadarLoc: Large-Scale Topological Radar Localization Using Learned Descriptors

License

Notifications You must be signed in to change notification settings

jac99/RadarLoc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RadarLoc: Large-Scale Topological Radar Localization Using Learned Descriptors

Paper: Large-Scale Topological Radar Localization Using Learned Descriptors accepted for 2021 International Conference on Neural Information Processing (ICONIP) arXiv

Jacek Komorowski, Monika Wysoczanska, Tomasz Trzcinski

Warsaw University of Technology

What's new

  • [2021-10-09] Code and pre-trained models released.

Our other projects

  • MinkLoc3D: MinkLoc3D: Point Cloud Based Large-Scale Place Recognition (WACV 2021): MinkLoc3D
  • MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition (IJCNN 2021): MinkLoc++
  • EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale (IEEE Robotics and Automation Letters April 2022): EgoNN
  • Improving Point Cloud Based Place Recognition with Ranking-based Loss and Large Batch Training (2022): MinkLoc3Dv2

Introduction

This work proposes a method for large-scale topological localization based on radar scan images using learned descriptors. We present a simple yet efficient deep network architecture to compute a rotationally invariant discriminative global descriptor from a radar scan image. The performance and generalization ability of the proposed method is experimentally evaluated on two large scale driving datasets: MulRan and Oxford Radar RobotCar. Additionally, we present a comparative evaluation of radar-based and LiDAR-based localization using learned global descriptors.

Overview

Citation

If you find this work useful, please consider citing:

@inproceedings{komorowski2021large,
title={Large-Scale Topological Radar Localization Using Learned Descriptors},
author={Komorowski, Jacek and Wysoczanska, Monika and Trzcinski, Tomasz},
booktitle={International Conference on Neural Information Processing},
pages={451--462},
year={2021},
organization={Springer}
}

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.9.1 and MinkowskiEngine 0.5.4 on Ubuntu 20.04 with CUDA 10.2. Note: CUDA 11.1 is not recommended as there are some issues with MinkowskiEngine 0.5.4 on CUDA 11.1.

The following Python packages are required:

  • PyTorch (version 1.9.1)
  • MinkowskiEngine (version 0.5.4)
  • pytorch_metric_learning (version 1.0 or above)
  • wandb

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/home/.../RadarLoc

Datasets

RadarLoc is trained and evaluated using the following datasets:

  • MulRan dataset: Sejong traversal is split into training and evaluation part, KAIST and Riverside traversals are used for evaluation link
  • Oxford Radar RobotCar dataset: sequences 2019-01-15-13-06-37-radar-oxford-10k and 2019-01-18-14-14-42-radar-oxford-10k are used for evaluation link

First, you need to download datasets:

  • For MulRan dataset you need to download ground truth data (*.csv), radar scan images (polar.zip) and (optionally) LiDAR point clouds (Ouster.zip) for traversals: Sejong01, Sejong02, KAIST01, KAIST02, Riverside01, Riverside02. Use this link.
  • For Oxford Radar RobotCar you need to download ground truth (ins.csv) radar scan images and (optionally) LiDAR point clouds (velodyne_left) for traversals: 2019-01-15-13-06-37-radar-oxford-10k and 2019-01-18-14-14-42-radar-oxford-10k. Use this link.

LiDAR point clouds are needed only if you want to train or evaluate point cloud-based descriptor. For radar-based descriptor (RadarLoc), point clouds are not needed.

After loading datasets you need to:

  1. Generate downsampled radar scan images for training/evaluation of our RadarLoc method (scans are downsampled to 384x128 resolution) and for evaluation of ScanContext method (scans are downsampled to 120x40 resolution). Run python downsample_radar_scans.py --dataset_root <dataset_root_path> --dataset <mulran|robotcar> script in scripts folder. Run the script twice to process two datasets (MulRan and Radar RobotCar). Downsampled radar scans will be saved as .png images in polar_384_128 and polar_120_40 subfolders in each traversal.
  2. Generate training pickles needed for the network training. These pickles are based on a training split of Sejong01 and Sejong02 traversals in MulRan dataset. Run python generate_training_tuples.py --dataset_root <mulran_dataset_root_path> script in datasets/mulran folder. Use default values for other parameters. It'll create training data in the dataset root folder for training radar-based RadarLoc descriptor (train_R_Sejong01_Sejong02_5_20.pickle, val_R_Sejong01_Sejong02_5_20.pickle) and LiDAR-based descriptor (train_L_Sejong01_Sejong02_5_20.pickle, val_L_Sejong01_Sejong02_5_20.pickle). The pickles contain lists of positives (similar locations) and non-negatives for each sensor reading (radar scan or LiDAR point cloud).
  3. Generate evaluation pickles for model evaluation. Run python generate_evaluation_sets.py --dataset_root <dataset_root_path> script from datasets/mulran and datasets/robotcar_radar to generate evaluation data for each dataset. Use default values for other parameters. Evaluation pickles will be saved in the dataset root folder in test_xxxxxxxxxx.pickle files.

Training

The training procedure for radar-based RadarLoc model and LiDAR-based MinkLoc model is similar. First, download datasets and generate training and evaluation pickles as described above. Edit the configuration file (config_radarloc.txt or config_minkloc.txt). Set dataset_folder parameter to point to the dataset root folder. Modify batch_size_limit parameter depending on available GPU memory. Default limit (=64) in config_minkloc.txt for LiDAR-based model requires at least 11GB of GPU RAM.

To train the network, run:

cd training

# Train radar-based RadarLoc model
python train.py --config ../config/config_radarloc.txt --model_config ../models/radarloc.txt 

# Train lidar-based MinkLoc model
python train.py --config ../config/config_minkloc.txt --model_config ../models/minkloc.txt

Pre-trained Models

Pretrained models are available in weights directory

  • radarloc.pth radar-based RadarLoc model
  • minkloc.pth LiDAR-based MinkLoc model

Evaluation

To evaluate pretrained models run the following commands:

cd eval

# Evaluate radar-based RadarLoc model
python evaluate.py --dataset_root <dataset_root_path> --dataset <mulran|robotcar> --sensor R --model_config ../models/radarloc.txt --weights ../weights/radarloc.pth

# Evaluate lidar-based MinkLoc model
python evaluate.py --dataset_root <dataset_root_path> --dataset <mulran|robotcar> --sensor L --model_config ../models/minkloc.txt  --weights ../weights/minkloc.pth

To run evaluation with random rotations of sensor readings (to verify rotational invariance of the learned descriptor) use with_rotation parameter.

Results

RadarLoc (radarloc.pth) performance, measured by Average Recall@1 with 5m. threshold.

Method Sejong KAIST Riverside Radar RobotCar
Ring key [1] 0.503 0.805 0.497 0.747
ScanContext [1] 0.868 0.935 0.671 0.906
VGG-16/NetVLAD 0.789 0.885 0.613 0.883
RadarLoc (our) 0.929 0.959 0.744 0.949

RadarLoc (radarloc.pth) performance, measured by Average Recall@1 with 10m. threshold.

Method Sejong KAIST Riverside Radar RobotCar
Ring key [1] 0.594 0.848 0.595 0.786
ScanContext [1] 0.879 0.946 0.772 0.933
VGG-16/NetVLAD 0.938 0.937 0.834 0.939
RadarLoc (our) 0.988 0.988 0.923 0.981
  1. G. Kim, A. Kim, "Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map", 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Comparison of radar-based (RadarLoc) and LiDAR-based (MinkLoc) topological localization.

Below table shows Average Recall@1 with 10m. threshold.

LiDAR-based model (MinkLoc) is an improved version of our previous MinkLoc3D model (MinkLoc3D), optimized for larger point clouds from a rotating 3D LiDAR. The model depth is increased and channel attention mechanism (Efficient Channel Attention) is added.

Method Sejong KAIST Riverside
RadarLoc (radarloc.pth) 0.988 0.988 0.923
MinkLoc (minkloc.pth) 0.986 0.929 0.872

License

Our code is released under the MIT License (see LICENSE file for details).

About

RadarLoc: Large-Scale Topological Radar Localization Using Learned Descriptors

Topics

Resources

License

Stars

Watchers

Forks

Languages